1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
|
#include <torch/csrc/jit/codegen/cuda/iter_visitor.h>
#include <torch/csrc/jit/codegen/cuda/kernel_ir_dispatch.h>
#include <torch/csrc/jit/codegen/cuda/lower2device.h>
#include <torch/csrc/jit/codegen/cuda/lower_magic_zero.h>
#include <torch/csrc/jit/codegen/cuda/lower_index_hoist.h>
namespace torch {
namespace jit {
namespace fuser {
namespace cuda {
namespace {
// Return leaf domains of a given domain.
std::unordered_set<IterDomain*> getUsedLeafIds(
IterDomain* id,
TensorDomain* td) {
const auto all_vals_between = DependencyCheck::getAllValsBetween(
{id}, {td->domain().begin(), td->domain().end()});
std::unordered_set<IterDomain*> used_leaf_ids;
for (const auto leaf : td->domain()) {
if (std::find(all_vals_between.begin(), all_vals_between.end(), leaf) !=
all_vals_between.end()) {
used_leaf_ids.insert(leaf);
}
}
TORCH_INTERNAL_ASSERT(
!used_leaf_ids.empty(),
"No used id found: ",
id->toString(),
", ",
td->toString());
return used_leaf_ids;
}
} // namespace
CommonIndexKey::CommonIndexKey(
IterDomain* consumer_indexed_id,
TensorDomain* consumer_td,
TensorDomain* ref_td,
const std::unordered_map<IterDomain*, Val*>& ref_index_map,
const std::vector<kir::ForLoop*>& loops) {
auto gpu_lower = GpuLower::current();
concrete_indexed_id_ = gpu_lower->caMap()->getConcreteMappedID(
consumer_indexed_id, IdMappingMode::EXACT);
const auto consumer_leaf_ids =
getUsedLeafIds(consumer_indexed_id, consumer_td);
// Convert to Parallel concrete IDs to find matching loops.
std::unordered_set<IterDomain*> concrete_leaf_ids;
for (auto& id : consumer_leaf_ids) {
concrete_leaf_ids.insert(
gpu_lower->caMap()->getConcreteMappedID(id, IdMappingMode::LOOP));
}
// Find used loops and their index vals
for (const auto i : c10::irange(loops.size())) {
auto loop = loops.at(i);
auto loop_id = gpu_lower->caMap()->getConcreteMappedID(
loop->iter_domain(), IdMappingMode::LOOP);
auto it = concrete_leaf_ids.find(loop_id);
if (it != concrete_leaf_ids.end()) {
// This leaf reference id is used for indexing the consumer id
used_loops_.push_back(loop);
auto index_it = ref_index_map.find(ref_td->axis(i));
TORCH_INTERNAL_ASSERT(
index_it != ref_index_map.end(),
"Index not found for leaf ID, ",
ref_td->axis(i)->toString());
loop_index_vals_.push_back(index_it->second);
}
}
TORCH_INTERNAL_ASSERT(
!used_loops_.empty(),
"No loop used for indexing found. ",
consumer_indexed_id->toString());
TORCH_INTERNAL_ASSERT(
consumer_leaf_ids.size() == used_loops_.size(),
"consumer_leaf_ids.size() = ",
consumer_leaf_ids.size(),
", used_loops_.size() == ",
used_loops_.size(),
", loops.size() == ",
loops.size());
}
CommonIndexKey::CommonIndexKey(
IterDomain* consumer_indexed_id,
TensorDomain* consumer_td,
const std::vector<IterDomain*>& loop_domains,
const std::unordered_map<IterDomain*, Val*>& loop_index_map,
const std::vector<kir::ForLoop*>& loops) {
auto gpu_lower = GpuLower::current();
concrete_indexed_id_ = gpu_lower->caMap()->getConcreteMappedID(
consumer_indexed_id, IdMappingMode::EXACT);
const auto consumer_leaf_ids =
getUsedLeafIds(consumer_indexed_id, consumer_td);
// Convert to Parallel concrete IDs to find matching loops.
std::unordered_set<IterDomain*> concrete_leaf_ids;
for (auto& id : consumer_leaf_ids) {
concrete_leaf_ids.insert(
gpu_lower->caMap()->getConcreteMappedID(id, IdMappingMode::LOOP));
}
// Find used loops and their index vals
for (const auto i : c10::irange(loops.size())) {
auto loop = loops.at(i);
auto loop_id = gpu_lower->caMap()->getConcreteMappedID(
loop->iter_domain(), IdMappingMode::LOOP);
auto it = concrete_leaf_ids.find(loop_id);
if (it != concrete_leaf_ids.end()) {
// This leaf reference id is used for indexing the consumer id
used_loops_.push_back(loop);
auto loop_concrete_id = gpu_lower->caMap()->getConcreteMappedID(
loop_domains.at(i), IdMappingMode::EXACT);
auto index_it = loop_index_map.find(loop_concrete_id);
TORCH_INTERNAL_ASSERT(
index_it != loop_index_map.end(),
"Index not found for leaf ID, ",
loop_domains.at(i)->toString(),
", concrete ID: ",
loop_concrete_id->toString());
loop_index_vals_.push_back(index_it->second);
}
}
TORCH_INTERNAL_ASSERT(
!used_loops_.empty(),
"No loop used for indexing found. ",
consumer_indexed_id->toString());
TORCH_INTERNAL_ASSERT(
consumer_leaf_ids.size() == used_loops_.size(),
"consumer_leaf_ids.size() = ",
consumer_leaf_ids.size(),
", used_loops_.size() == ",
used_loops_.size(),
", loops.size() == ",
loops.size());
}
bool CommonIndexKey::operator==(const CommonIndexKey& other) const {
auto gpu_lower = GpuLower::current();
if (concrete_indexed_id_ != other.concrete_indexed_id_) {
return false;
}
if (used_loops_.size() != other.used_loops_.size()) {
return false;
}
// Check if both CommonIndexKeys use the same loops. If not, it's
// still valid to share the same hoisted index as long as: 1) each
// loop pair is mapped with the CA index map, and 2) they are not
// instantiated as actual loops.
for (const auto i : c10::irange(used_loops_.size())) {
auto lhs_loop = used_loops_.at(i);
auto rhs_loop = other.used_loops_.at(i);
if (lhs_loop == rhs_loop) {
continue;
}
if (gpu_lower->caMap()->areMapped(
lhs_loop->iter_domain(),
rhs_loop->iter_domain(),
IdMappingMode::EXACT) &&
lhs_loop->isTrivial() && rhs_loop->isTrivial()) {
continue;
}
return false;
}
for (const auto i : c10::irange(loop_index_vals_.size())) {
auto lhs_index = loop_index_vals_.at(i);
auto rhs_index = other.loop_index_vals_.at(i);
if (lhs_index == rhs_index) {
continue;
}
// Initial index variables can have some additions such as magic
// zero and "1" when used in producer indexing for double buffered
// tensors. Thus, the initial variables themselves may be
// different, and its components need to be examined. An easy way
// is to flatten them to strings as follows.
auto lhs_str = loop_index_vals_.at(i)->toInlineString();
auto rhs_str = other.loop_index_vals_.at(i)->toInlineString();
if (lhs_str == rhs_str) {
continue;
}
return false;
}
return true;
}
std::string CommonIndexKey::toString() const {
TORCH_INTERNAL_ASSERT(concrete_indexed_id_ != nullptr);
std::stringstream ss;
ss << "CommonIndexKey: " << concrete_indexed_id_->toString();
ss << ", { ";
for (auto loop : used_loops_) {
ss << loop->iter_domain()->toString() << " ";
}
ss << "}";
ss << ", { ";
for (auto val : loop_index_vals_) {
ss << val->toString() << " ";
}
ss << "}";
return ss.str();
}
std::pair<Val*, bool> CommonIndexMap::insert(
IterDomain* indexed_consumer_id,
TensorDomain* consumer_td,
TensorDomain* ref_td,
const std::unordered_map<IterDomain*, Val*>& ref_index_map,
const std::vector<kir::ForLoop*>& loops,
Val* index) {
if (index->definition() == nullptr) {
// Only defined val is eligible to hoist
return {index, false};
}
const CommonIndexKey key(
indexed_consumer_id, consumer_td, ref_td, ref_index_map, loops);
return tryInsertNewIndex(key, index);
}
std::pair<Val*, bool> CommonIndexMap::insert(
IterDomain* indexed_consumer_id,
TensorDomain* consumer_td,
const std::vector<IterDomain*>& loop_domains,
const std::unordered_map<IterDomain*, Val*>& loop_index_map,
const std::vector<kir::ForLoop*>& loops,
Val* index) {
if (index->definition() == nullptr) {
// Only defined val is eligible to hoist
return {index, false};
}
const CommonIndexKey key(
indexed_consumer_id, consumer_td, loop_domains, loop_index_map, loops);
return tryInsertNewIndex(key, index);
}
std::pair<Val*, bool> CommonIndexMap::tryInsertNewIndex(
CommonIndexKey key,
Val* index) {
Val* hoisted_index = nullptr;
bool new_index_inserted = false;
// Hoisting is not possible if any of used loops is grouped.
if (std::any_of(
key.usedLoops().begin(), key.usedLoops().end(), [](const auto loop) {
return loop->iter_domain()->getParallelType() ==
ParallelType::Group;
})) {
return {index, false};
}
// If already mapped, return the previously mapped index
auto it = common_index_map_.find(key);
if (it != common_index_map_.end()) {
hoisted_index = it->second;
new_index_inserted = false;
++use_counts_.at(key);
} else {
common_index_map_.emplace(key, index);
hoisted_index = index;
new_index_inserted = true;
use_counts_[key] = 1;
}
return {hoisted_index, new_index_inserted};
}
namespace {
//! Insertion point of allocation
struct CommonIndexInsertionInfo {
Expr* ref = nullptr;
kir::Scope* scope = nullptr;
};
// Inserts allocations of hoisted indices
class CommonIndexInserter : private kir::ExprMutator {
public:
static std::vector<Expr*> run(
const std::vector<Expr*>& exprs,
const CommonIndexMap& common_indices) {
CommonIndexInserter inserter(exprs, common_indices);
return inserter.exprs_;
}
private:
CommonIndexInserter(
const std::vector<Expr*>& exprs,
const CommonIndexMap& common_index_map)
: common_index_map_(common_index_map) {
// Create a map to keys from loops where they should be inserted
for (const auto& kv : common_index_map.commonIndexMap()) {
const auto& key = kv.first;
// Only consider indices used multiple times
if (!usedMultipleTimes(key)) {
continue;
}
TORCH_INTERNAL_ASSERT(!key.usedLoops().empty());
auto insertion_loop = key.usedLoops().back();
innermost_used_loop_map_[insertion_loop].push_back(key);
}
traverseAndInsert(exprs);
}
CommonIndexInsertionInfo findInsertionPoint(
const CommonIndexKey& key,
kir::ForLoop* current_loop) const {
CommonIndexInsertionInfo info;
// Allocation must be inside any used non-trivial loop. Since the
// loop index value is constant if a loop is trivial, allocation
// does not need to be inside trivial loops.
for (const auto loop : key.usedLoops()) {
if (!loop->isTrivial()) {
info.ref = loop->body()[0];
info.scope = &(loop->body());
}
}
// If no non-trivial used loop is found, insert at the top-level
// scope just before the outer-most loop.
if (info.ref == nullptr) {
info.ref = scope_exprs_.empty() ? current_loop : scope_exprs_.at(0);
info.scope = nullptr;
}
return info;
}
using kir::ExprMutator::handle;
void handle(kir::ForLoop* loop) final {
auto innermost_loop_map_it = innermost_used_loop_map_.find(loop);
if (innermost_loop_map_it == innermost_used_loop_map_.end()) {
kir::ExprMutator::handle(loop);
return;
}
for (const auto& key : innermost_loop_map_it->second) {
auto common_index = common_index_map_.commonIndexMap().at(key);
// Insert only when the index is used multiple times and is not
// yet inserted.
if (inserted_indices_.find(common_index) != inserted_indices_.end()) {
continue;
}
// Make the type of the hoisted index be the index type of the
// kernel, which can be either int64_t or int. Not very clean,
// but this seems to be the quickest way to use the index type
// as we don't have a scalar IR node for the index type.
common_index->resolveIndexDtype();
auto alloc = IrBuilder::create<kir::Allocate>(
common_index,
MemoryType::Local,
GpuLower::current()->kernel()->oneVal());
const auto common_index_def = common_index->definition();
TORCH_INTERNAL_ASSERT(
common_index_def != nullptr,
"Hosted index must have a definition. ",
common_index->toString());
const auto insertion_info = findInsertionPoint(key, loop);
registerInsertBefore(insertion_info.ref, alloc, insertion_info.scope);
registerInsertBefore(
insertion_info.ref, common_index_def, insertion_info.scope);
// Track inserted index
inserted_indices_.emplace(common_index);
}
kir::ExprMutator::handle(loop);
}
bool usedMultipleTimes(const CommonIndexKey& key) {
auto it = common_index_map_.useCounts().find(key);
TORCH_INTERNAL_ASSERT(
it != common_index_map_.useCounts().end(),
"Key not found in the use-count map: ",
key.toString());
return it->second > 1;
}
private:
const CommonIndexMap& common_index_map_;
//! Map to CommonIndexKeys from their innermost used loops
std::unordered_map<kir::ForLoop*, std::vector<CommonIndexKey>>
innermost_used_loop_map_;
//! Keep track of inserted indices
std::unordered_set<Val*> inserted_indices_;
};
} // namespace
std::vector<Expr*> allocateCommonIndices(const std::vector<Expr*>& exprs) {
return CommonIndexInserter::run(exprs, GpuLower::current()->commonIndexMap());
}
} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch
|