1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
|
#include <torch/csrc/jit/codegen/cuda/lower_loops.h>
#include <torch/csrc/jit/codegen/cuda/arith.h>
#include <torch/csrc/jit/codegen/cuda/ir_iostream.h>
#include <torch/csrc/jit/codegen/cuda/ir_utils.h>
#include <torch/csrc/jit/codegen/cuda/iter_visitor.h>
#include <torch/csrc/jit/codegen/cuda/kernel_expr_evaluator.h>
#include <torch/csrc/jit/codegen/cuda/lower2device.h>
#include <torch/csrc/jit/codegen/cuda/lower_utils.h>
#include <torch/csrc/jit/codegen/cuda/transform_replay.h>
#include <algorithm>
#include <deque>
#include <numeric>
namespace torch {
namespace jit {
namespace fuser {
namespace cuda {
std::vector<Expr*> LoopNestGenerator::loweredExprs(
const std::vector<Expr*>& exprs) {
FUSER_PERF_SCOPE("GpuLower::Lower::LoopNestGenerator::loweredExprs");
TORCH_INTERNAL_ASSERT(FusionGuard::getCurFusion() != nullptr);
LoopNestGenerator generator(exprs);
return generator.lowered_exprs_;
}
LoopNestGenerator::LoopNestGenerator(const std::vector<Expr*>& exprs) {
generate(exprs);
}
namespace {
kir::ForLoop* openForHelper(kir::ForLoop* scope, IterDomain* id) {
auto extent_with_halo = GpuLower::current()->haloInfo().getExtent(id);
kir::ForLoop* new_scope = nullptr;
if (extent_with_halo) {
// When an axis is extended with halo, unrolling and vectorization
// are assumed to not be used for now.
TORCH_INTERNAL_ASSERT(
id->getParallelType() != ParallelType::Unroll &&
!isParallelTypeVectorize(id->getParallelType()));
// Use the extent that's extended by halo
new_scope = IrBuilder::create<kir::ForLoop>(
id,
GpuLower::current()->caMap()->getIndexVariable(id),
nullptr,
extent_with_halo,
nullptr,
false,
nullptr,
false,
DoubleBufferLoopStage::NotApplicable);
} else {
new_scope = IrBuilder::create<kir::ForLoop>(id);
}
if (scope != nullptr) {
scope->body().insert(0, new_scope);
}
return new_scope;
}
} // namespace
void LoopNestGenerator::openFor(IterDomain* id) {
if (for_loops_.size() > 0) {
const auto new_scope = openForHelper(for_loops_.back(), id);
// for_loop_allocations_.insert({new_scope, 0});
for_loops_.push_back(new_scope);
} else {
for_loops_.push_back(openForHelper(nullptr, id));
lowered_exprs_.insert(lowered_exprs_.begin(), for_loops_.back());
}
}
void LoopNestGenerator::closeFor() {
TORCH_INTERNAL_ASSERT(!for_loops_.empty());
for_loops_.pop_back();
}
void LoopNestGenerator::pushFront(Expr* expr) {
if (for_loops_.size() == 0) {
lowered_exprs_.insert(lowered_exprs_.begin(), expr);
} else {
for_loops_.back()->body().insert(0, expr);
}
}
void LoopNestGenerator::handle(Expr* expr) {
// Check if it's a tensor view expression we need to place in the loop nest
// structure
if (!ir_utils::isTvOp(expr)) {
// Close all the loops, scalar operations cannot be inside for loops based
// on expr sorting.
while (!for_loops_.empty()) {
closeFor();
}
pushFront(expr);
for (auto out : expr->outputs()) {
TORCH_INTERNAL_ASSERT(
out->getValType().value() == ValType::Scalar,
"Unrecognized output type found in expr ",
expr,
" cannot lower ",
out->getValType().value());
pushFront(IrBuilder::create<kir::Allocate>(
out, MemoryType::Local, GpuLower::current()->kernel()->oneVal()));
}
return;
}
TensorView* out_tv = expr->output(0)->as<TensorView>();
// Grab the loop structure
TORCH_INTERNAL_ASSERT(
loop_structures_.find(out_tv) != loop_structures_.end(),
"Could not find loop structure of ",
out_tv);
// Figure out what the entire loop structure should look like.
std::vector<IterDomain*> loop_structure = loop_structures_.at(out_tv);
// Ordering of loop_structure is global, so simply close loops we don't need,
// and open the ones we do.
while (!for_loops_.empty() &&
std::find(
loop_structure.begin(),
loop_structure.end(),
for_loops_.back()->iter_domain()) == loop_structure.end()) {
closeFor();
}
for (auto loop : loop_structure) {
auto find_it = std::find_if(
for_loops_.begin(), for_loops_.end(), [loop](kir::ForLoop* fl) {
return fl->iter_domain() == loop;
});
if (find_it == for_loops_.end()) {
openFor(loop);
}
}
pushFront(expr);
}
// Generate the loop nest structure and place it in lowered_exprs_
void LoopNestGenerator::generate(const std::vector<Expr*>& exprs) {
TORCH_INTERNAL_ASSERT(lowered_exprs_.empty());
// Figure out loop structure of each expression. This can be a bit convoluted,
// for an example why see FusionAdvancedLowering6
// Grab iteration domain dependencies, similar to the logic in
// lower_expr_sort, EXCEPT dependencies are in opposite order,
// inner loops are dependant on outer loops.
const auto& ca_map = GpuLower::current()->caMap();
std::unordered_map<IterDomain*, std::unordered_set<IterDomain*>>
concrete_id_dependencies;
for (auto tv : ir_utils::allTvs(FusionGuard::getCurFusion())) {
std::unordered_set<IterDomain*> dependencies;
for (auto tv_id : tv->domain()->domain()) {
auto concrete_id =
ca_map->getConcreteMappedID(tv_id, IdMappingMode::LOOP);
if (concrete_id_dependencies.find(concrete_id) ==
concrete_id_dependencies.end()) {
concrete_id_dependencies[concrete_id] = dependencies;
} else {
concrete_id_dependencies[concrete_id].insert(
dependencies.begin(), dependencies.end());
}
// Loops after tv_id are dependent on tv_id
dependencies.emplace(concrete_id);
}
}
// Fill out dependencies as IDs will have local dependency information, but
// it's still not guaranteed to be global.
// If loop structure is something like:
// T0 [I0]
// T1 [I0, I1]
// T2 [I1, I2]
//
// I0 will be marked as a dependency of I1
// I1 will be marked as a dependency of I2
//
// However, I0 will not be marked as a dep of I2, so we need to fill out the
// dependency analysis. This is done by iterating through IterDomains filling
// out all the dependencies of dependencies recursively.
std::deque<IterDomain*> to_visit;
std::unordered_set<IterDomain*> visited;
std::transform(
concrete_id_dependencies.begin(),
concrete_id_dependencies.end(),
std::back_inserter(to_visit),
[](const auto& concrete_dep_entry) { return concrete_dep_entry.first; });
while (!to_visit.empty()) {
auto id = to_visit.front();
to_visit.pop_front();
auto& dependencies = concrete_id_dependencies.at(id);
bool ready = std::all_of(
dependencies.begin(), dependencies.end(), [&visited](IterDomain* id) {
return visited.count(id);
});
if (!ready) {
to_visit.push_back(id);
continue;
}
for (auto dependency : dependencies) {
auto dep_of_dep = concrete_id_dependencies.at(dependency);
dependencies.insert(dep_of_dep.begin(), dep_of_dep.end());
}
visited.emplace(id);
}
// Generate loop structure for each tensor view
for (auto tv : ir_utils::allTvs(FusionGuard::getCurFusion())) {
// Zero dim tensor support
if (tv->nDims() == 0) {
loop_structures_[tv] = std::vector<IterDomain*>();
continue;
}
auto last_id_concrete = ca_map->getConcreteMappedID(
tv->axis((int)(tv->nDims() - 1)), IdMappingMode::LOOP);
auto all_loops_it = concrete_id_dependencies.find(last_id_concrete);
TORCH_INTERNAL_ASSERT(
all_loops_it != concrete_id_dependencies.end(),
"Should have processed all id's in all tvs.");
std::vector<IterDomain*> loop_structure(
all_loops_it->second.begin(), all_loops_it->second.end());
// Dependencies of last domain doesn't include last domain, include it
// manually
loop_structure.emplace_back(last_id_concrete);
// reverse sort (rbegin & rend) since we want the reverse of the order
// given by IterDomainDependencySorter
std::sort(
loop_structure.rbegin(),
loop_structure.rend(),
IterDomainDependencySorter(
concrete_id_dependencies, GpuLower::current()->caMap()));
loop_structures_[tv] = loop_structure;
}
// Process the carefully ordered expressions
for (auto it = exprs.rbegin(); it != exprs.rend(); ++it) {
handle(*it);
}
}
} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch
|