1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
|
#include <torch/csrc/jit/codegen/cuda/lower_predicate.h>
#include <torch/csrc/jit/codegen/cuda/arith.h>
#include <torch/csrc/jit/codegen/cuda/index_compute.h>
#include <torch/csrc/jit/codegen/cuda/instrumentation.h>
#include <torch/csrc/jit/codegen/cuda/ir_iostream.h>
#include <torch/csrc/jit/codegen/cuda/ir_utils.h>
#include <torch/csrc/jit/codegen/cuda/kernel_ir.h>
#include <torch/csrc/jit/codegen/cuda/kernel_ir_dispatch.h>
#include <torch/csrc/jit/codegen/cuda/lower2device.h>
#include <torch/csrc/jit/codegen/cuda/lower_utils.h>
#include <torch/csrc/jit/codegen/cuda/predicate_compute.h>
#include <torch/csrc/jit/codegen/cuda/transform_iter.h>
#include <torch/csrc/jit/codegen/cuda/transform_replay.h>
namespace torch {
namespace jit {
namespace fuser {
namespace cuda {
namespace {
class ConditionalFromPredicateModifier : public kir::IrVisitor {
public:
ConditionalFromPredicateModifier() = delete;
static std::vector<Expr*> fillPredicates(const std::vector<Expr*>& exprs) {
ConditionalFromPredicateModifier cfpm(exprs);
return cfpm.exprs_;
}
private:
ConditionalFromPredicateModifier(const std::vector<Expr*>& exprs) {
FUSER_PERF_SCOPE(
"GpuLower::Lower::ConditionalFromPredicateModifier::process");
kir::IrVisitor::handle(exprs);
}
using kir::IrVisitor::handle;
void handle(Expr* expr) final {
if (expr != nullptr && expr->predicate() != nullptr) {
// Replace expr predicate with bool conditional
auto conditional = generateConditional(expr->predicate());
if (expr->predicate()->predicate_type() == PredicateType::Vectorize) {
// TODO: This logic doesn't seem to fit well here, for unswitch the
// logic is in the unroll loop to set the thread predicate to the expr.
// I didn't have a quick way to do that so placing this here for now.
TORCH_INTERNAL_ASSERT(
expr->isA<kir::IfThenElse>(),
"Predicate handling expects ITE statement.");
auto ite = expr->as<kir::IfThenElse>();
TORCH_INTERNAL_ASSERT(
ite->thenBody().size() == 1,
"Expecting predicated body to only have one vectorized expression.");
auto vec_expr = ite->thenBody()[0];
TORCH_INTERNAL_ASSERT(
vec_expr->isA<UnaryOp>() || vec_expr->isA<LoadStoreOp>(),
"Vectorize predicate exprs only supported on set operations.");
TORCH_INTERNAL_ASSERT(
ir_utils::isTvOp(vec_expr),
"Vectorize predicate exprs only supported on tensor view operations.");
if (!vec_expr->inputs()[0]->isConstScalar()) {
conditional = SimplifyingIrBuilder::andExpr(
conditional,
GpuLower::current()->threadPredMap().getPredicate(
ir_utils::getTvOutput(vec_expr)))
->as<Bool>();
}
}
TORCH_INTERNAL_ASSERT(conditional != nullptr);
expr->predicate()->setValue(conditional);
TORCH_INTERNAL_ASSERT(expr->predicate()->value() != nullptr);
setWritePredicate(expr, conditional);
}
// Note: [Predicate Inversion for CpAsync]
// Today for vectorized support the pattern is:
// Initialize buffer -> predicated load
// For memcpy async:
// If we initialized and then loaded (without sync) it would be undefined
// behavior.
// Initialize only the "virtual out of boundary" accesses.
// Memory allocated, but outside the virtual tensor space.
// Virtual tensor space today is effectively what would be allocated in
// global memory. Then only copy the "within bound" accesses.
// This is a WAR today based on how our system is set up.
// We would want to have a separate concept of SMEM space from Virtual or
// GMEM space, so that we know we're only working with the allocated
// SMEM.
// If we hit outside the allocated SMEM bad things happen.
// Today asserting in predicate removal making sure that the virtual and
// SMEM boundaries line up based on the IterDomains.
//
// TODO: in a follow up we need to extend the predicate
// infrastructure to generate predicate for both gmem
// and smem, and the predicate removal will need to
// be extended as well for the perf critical regions.
if (isPredicatedInitForCpAsync(expr)) {
invertPredicateForGmemToSharedMemInitialize(expr);
}
kir::IrVisitor::handle(expr);
}
// Invert the predicate of given expr.
void invertPredicateForGmemToSharedMemInitialize(Expr* expr) {
auto pred = expr->predicate()->value();
auto invert = SimplifyingIrBuilder::notExpr(pred);
expr->predicate()->setValue(invert->as<Bool>());
}
// Detect if this expr is an initialization for vectorized
// cp asyc with predicates.
bool isPredicatedInitForCpAsync(Expr* expr) {
// Match the pattern:
// If(pred)
// TV = 0;
// where TV is the output of cp async.
auto maybe_init = ir_utils::getMaybePredicatedSingleton(expr);
return maybe_init.has_value() &&
ir_utils::isCpAsyncInit(maybe_init.value());
}
void setWritePredicate(Expr* expr, Bool* read_cond) {
if (expr->writePredicate() != nullptr) {
auto write_cond = generateConditional(expr->writePredicate());
if (write_cond) {
expr->writePredicate()->setValue(write_cond);
} else {
// If generateConditional returns null, it means no specific
// predicate needs to be used.
expr->setWritePredicate(nullptr);
}
}
}
void handle(kir::IfThenElse* ite) final {
TORCH_INTERNAL_ASSERT(ite->predicate() != nullptr);
// If ite already has Bool conditional, handle internal expressions
// Otherwise, generate conditional and update predicate
if (!ite->predicate()->hasValue()) {
auto conditional = generateConditional(ite->predicate());
TORCH_INTERNAL_ASSERT(conditional != nullptr);
TORCH_INTERNAL_ASSERT(conditional->isA<Bool>());
// Update bool conditional in-place
ite->predicate()->setValue(conditional);
TORCH_INTERNAL_ASSERT(ite->predicate()->value() != nullptr);
}
kir::IrVisitor::handle(ite);
}
// Generate conditional according to PredicateType
Bool* generateConditional(kir::Predicate* pred) {
switch (pred->predicate_type()) {
case PredicateType::Inline:
case PredicateType::ReductionWrite:
case PredicateType::Misaligned:
case PredicateType::Shift:
case PredicateType::Padding: {
return PredicateCompute::getInlinePredicate(
pred->expr(),
for_loops_,
pred->thread_pred(),
pred->predicate_type());
}
case PredicateType::Vectorize: {
std::vector<kir::ForLoop*> outer_loops;
kir::ForLoop* vectorized_loop = nullptr;
for (auto loop : for_loops_) {
if (loop->iter_domain()->getParallelType() ==
ParallelType::Vectorize) {
vectorized_loop = loop;
break;
} else {
outer_loops.emplace_back(loop);
}
}
TORCH_INTERNAL_ASSERT(
vectorized_loop != nullptr, "Should be unreachable.");
return UnswitchPredicate::get(outer_loops, vectorized_loop);
}
case PredicateType::Unswitch: {
return UnswitchPredicate::get(for_loops_, pred->unrolled_loop());
}
case PredicateType::Manual: {
return pred->value();
}
default:
break;
}
return nullptr;
}
};
} // namespace
std::vector<Expr*> generateConditionalFromPredicate(
const std::vector<Expr*>& exprs) {
return ConditionalFromPredicateModifier::fillPredicates(exprs);
}
} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch
|