1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
|
#include <torch/csrc/jit/codegen/cuda/lower_predicate_elimination.h>
#include <torch/csrc/jit/codegen/cuda/arith.h>
#include <torch/csrc/jit/codegen/cuda/expr_evaluator.h>
#include <torch/csrc/jit/codegen/cuda/instrumentation.h>
#include <torch/csrc/jit/codegen/cuda/ir_iostream.h>
#include <torch/csrc/jit/codegen/cuda/ir_utils.h>
#include <torch/csrc/jit/codegen/cuda/lower2device.h>
#include <torch/csrc/jit/codegen/cuda/lower_shift.h>
#include <torch/csrc/jit/codegen/cuda/lower_utils.h>
#include <torch/csrc/jit/codegen/cuda/predicate_compute.h>
#include <torch/csrc/jit/codegen/cuda/transform_iter.h>
#include <torch/csrc/jit/codegen/cuda/transform_replay.h>
namespace torch {
namespace jit {
namespace fuser {
namespace cuda {
namespace {
// Warp primitives are currently limited to un-predicated usage,
// predicating these ops will require extra steps to ensure that
// the whole warp will get the same value.
void assertOnWarpOps(const Expr* expr) {
TORCH_INTERNAL_ASSERT(
!ir_utils::isLdMatrixOp(expr),
"Predicate elimination: cannot eliminate pred for ldmatrix, use exact parallel dims",
expr->toString());
TORCH_INTERNAL_ASSERT(
!expr->isA<MmaOp>(),
"Mma op: cannot eliminate predicate for mma op, tiling not valid. ",
expr->toString());
}
} // namespace
namespace {
// Utility to check if the scheduled domain of the given
// TensorView represent an exact shared mem access, meaning
// that all the thread parallel dimensions on the leaf nodes
// are exact so that the shared mem read/write would not
// run out of bound because of thread over-subscription.
bool isExactParallelSharedMemAccess(TensorView* tv) {
auto& parallel_dimension_map = GpuLower::current()->parallelDimensionMap();
for (auto id : tv->domain()->domain()) {
if (id->isThreadDim()) {
auto ptype = id->getParallelType();
// Need to predicate to avoid out of bound access
// because of over-subscribed block size.
if (!parallel_dimension_map.isExact(ptype)) {
return false;
}
}
}
return true;
}
class PredicateAnalyzer : public OptOutDispatch {
public:
//! Checks if a predicate is needed to avoid out-of-bound accesses.
//!
//! Due to the way we allocate local-memory tensors, there should
//! never be out-of-bound accesses with consumer tensors when allocated on
//! local memory. However, accessing producer tensors still may
//! result in out-of-bound as they are replayed as consumers.
static bool needsPredicate(TensorView* producer, TensorView* consumer) {
// Both tensors must be on local or shared memory. Global tensors must be
// predicated as allocation is done based on root domains. Smem
// and local tensors are allocated based on leaf domains.
// However, smem tensors are parallelized, which is highly likely, the size
// of the parallelized axis is the actual size of the axis, not
// the number of threads. This is currently actively checked to avoid
// out of bound shared mem access by out of bound threads.
if (producer->getMemoryType() == MemoryType::Global ||
consumer->getMemoryType() == MemoryType::Global) {
return true;
}
auto pairwise_map = PairwiseRootDomainMap(producer, consumer);
auto c2p =
BestEffortReplay::replayPasC(producer, consumer, -1, pairwise_map)
.getReplay();
PredicateAnalyzer analyzer(c2p);
for (auto id : consumer->domain()->domain()) {
if (analyzer.needsPredicate(id)) {
return true;
}
}
return false;
}
private:
PredicateAnalyzer(const std::unordered_map<IterDomain*, IterDomain*>& c2p_map)
: c2p_map_(c2p_map) {}
// Returns true if no out-of-bound accesses could occur with a
// producer
bool needsPredicate(IterDomain* consumer_id) {
needs_predicate_ = false;
handle(consumer_id);
return needs_predicate_;
}
void handle(IterDomain* consumer_id) override {
// The traversal should have ended if needs_predicate_ was true
TORCH_INTERNAL_ASSERT(!needs_predicate_);
// If consumer_id is not going to be materialized as a loop (e.g.,
// broadcast), no need to predicate
if (consumer_id->isBroadcast() ||
GpuLower::current()->trivialReductionInfo().isDerived(consumer_id)) {
return;
}
// If the producer has a matching domain, it should not cause
// out-of-bound accesses
if (c2p_map_.find(consumer_id) != c2p_map_.end()) {
return;
}
// If no definition exists, stop traversing
if (consumer_id->definition() == nullptr) {
return;
}
OptOutDispatch::handle(consumer_id->definition());
}
// If it splits the input axis evenly, proceeds to check the input
// axis. Otherwise, we can't skip predication as it might cause
// out-bound accesses with the producer tensor
void handle(Split* split) override {
auto factor = split->factor()->getInt();
if (!factor.has_value()) {
needs_predicate_ = true;
return;
}
ExpressionEvaluator ee(split->fusion());
const auto in_extent = ee.evaluate(split->in()->extent());
if (!in_extent.has_value() || ((in_extent.value() % factor.value()) != 0)) {
needs_predicate_ = true;
return;
}
handle(split->in());
}
void handle(Merge* merge) override {
handle(merge->inner());
if (needs_predicate_) {
return;
}
handle(merge->outer());
}
private:
//! BestEffort map from consumer IDs to producer IDs
const std::unordered_map<IterDomain*, IterDomain*>& c2p_map_;
bool needs_predicate_ = false;
};
class PredicateChcker : public IterVisitor {
public:
static bool needsPredicate(
Expr* expr,
const std::unordered_set<const Expr*>& non_predicated_exprs) {
if (!ir_utils::isTvOp(expr)) {
return false;
}
PredicateChcker checker(non_predicated_exprs);
checker.handle(expr);
return checker.needs_predicate_;
}
private:
PredicateChcker(const std::unordered_set<const Expr*>& non_predicated_exprs)
: non_predicated_exprs_(non_predicated_exprs) {}
using IterVisitor::handle;
void handle(Expr* expr) final {
needs_predicate_ = predicateIntDiv(expr) ||
predicateMisalignedVectorize(expr) || predicateShift(expr) ||
predicateSharedMemAccess(expr) || predicateProducerConsumerPair(expr) ||
predicateNonDivisibleRootDomains(expr) ||
predicateNonDivisibleSplit(expr) || predicateExpandReduce(expr);
// A cp.async op would need a predicate for either the global
// input or its shared mem output, or both.
// Due to the WAR discussed in [Predicate Inversion for CpAsync],
// we currently cannot support use cases where both the gmem read
// and the smem write need to be predicated.
// Adding a check here would make the exclusion of such case as precise as
// possible and avoid duplication of predicateSharedMemAccess
// logic. But this part along with [Predicate Inversion for CpAsync]
// should be cleaned up all together when we extend predicate/masking
// logic to cover this usage.
TORCH_INTERNAL_ASSERT(
!(ir_utils::isCpAsyncOp(expr) && predicateSharedMemAccess(expr)),
"predicate removal: unsupported use case of cp.async");
if (needs_predicate_) {
return;
}
// Check ExprType-specific conditions
IterVisitor::handle(expr);
}
// All "predicateXYZ" functions return true if an expr needs to be
// predicated.
// Always predicate integer division and related ops as we don't
// know what values are in the out-of-bound region and they may
// cause exceptions
bool predicateIntDiv(Expr* expr) const {
auto dt = expr->outputs()[0]->getDataType().value();
return (
(dt == DataType::Int || dt == DataType::Int32) &&
expr->isA<BinaryOp>() &&
(expr->as<BinaryOp>()->getBinaryOpType() == BinaryOpType::Div ||
expr->as<BinaryOp>()->getBinaryOpType() == BinaryOpType::Mod ||
expr->as<BinaryOp>()->getBinaryOpType() == BinaryOpType::Remainder ||
expr->as<BinaryOp>()->getBinaryOpType() == BinaryOpType::CeilDiv));
}
// If we're reducing an expanded domain, we need to be careful to predicate it
// or we could end up reducing a broadcasted value too many times.
bool predicateExpandReduce(Expr* expr) const {
if (!ir_utils::isReductionOp(expr)) {
return false;
}
auto tv_inputs = ir_utils::getTvs(expr->inputs());
TORCH_INTERNAL_ASSERT(
tv_inputs.size() > 0,
"Should never have a reduction op without a tensor view input.");
bool found_expand = false;
for (auto tv_input : tv_inputs) {
found_expand |= std::any_of(
tv_input->getMaybeRFactorDomain().begin(),
tv_input->getMaybeRFactorDomain().end(),
[](IterDomain* id) { return id->hasExpandedExtent(); });
}
if (!found_expand) {
return false;
}
auto tv_outputs = ir_utils::getTvs(expr->outputs());
if (expr->isA<WelfordOp>() && tv_inputs.size() != tv_outputs.size()) {
tv_outputs = std::vector<TensorView*>(tv_inputs.size(), tv_outputs[0]);
}
TORCH_INTERNAL_ASSERT(
tv_outputs.size() == tv_inputs.size(),
"Was expecting matching number of inputs and outputs for expression: ",
expr->toString());
for (auto i : c10::irange(tv_inputs.size())) {
const auto root_p2c =
PairwiseRootDomainMap(tv_inputs[i], tv_outputs[i])
.mapProducerToConsumer(
tv_inputs[i]->domain(), tv_outputs[i]->domain());
for (auto entry : root_p2c) {
auto p_id = entry.first;
auto c_id = entry.second;
if (p_id->hasExpandedExtent() && c_id->isReduction()) {
return true;
}
}
}
return false;
}
// Skip if MisalignedVectorize is involved for now. This could be
// relaxed.
bool predicateMisalignedVectorize(Expr* expr) const {
std::vector<const std::vector<Val*>*> inputs_and_outputs = {
&(expr->inputs()), &(expr->outputs())};
for (const auto& inputs_or_outputs : inputs_and_outputs) {
for (auto tv : ir_utils::filterByType<TensorView>(*inputs_or_outputs)) {
if (std::any_of(
tv->domain()->domain().begin(),
tv->domain()->domain().end(),
[](IterDomain* axis) {
return axis->getParallelType() ==
ParallelType::MisalignedVectorize;
})) {
return true;
}
}
}
return false;
}
// Shift is not supported yet.
bool predicateShift(Expr* expr) const {
auto& halo_info = GpuLower::current()->haloInfo();
auto input_tvs = ir_utils::filterByType<TensorView>(expr->inputs());
return halo_info.needsShiftPredicate(expr) ||
std::any_of(input_tvs.begin(), input_tvs.end(), [&](auto input_tv) {
return input_tv->definition() != nullptr &&
halo_info.needsShiftPredicate(input_tv->definition());
});
}
// Predicates the expression if any producer-consumer pair of the
// expression needs to be predicated
bool predicateProducerConsumerPair(Expr* expr) const {
for (auto output : ir_utils::filterByType<TensorView>(expr->outputs())) {
for (auto input : ir_utils::filterByType<TensorView>(expr->inputs())) {
if (PredicateAnalyzer::needsPredicate(input, output)) {
return true;
}
}
}
return false;
}
bool predicateSharedMemAccess(Expr* expr) const {
// This is initial step to gradually remove predicates around
// sharedmem access in suitable situations.
// Using an additional variable to track the predicate-on reasons
// when the predicate around shared mem cannot be removed.
for (auto consumer : ir_utils::filterByType<TensorView>(expr->outputs())) {
for (auto producer : ir_utils::filterByType<TensorView>(expr->inputs())) {
if (producer->getMemoryType() == MemoryType::Shared ||
consumer->getMemoryType() == MemoryType::Shared) {
if (needSharedMemPredicate(producer, consumer)) {
return true;
}
}
}
}
return false;
}
// Check for conditions where the predicate cannot be removed
// when either producer or consumer is in shared memory.
bool needSharedMemPredicate(TensorView* producer, TensorView* consumer)
const {
// Indexing is based on consumer leaf ids so check the consumer.
// If consumer schedule contains in-exact thread parallel
// dimensions, need to predicate against out of bound
// shared memory access by out of bound threads.
if (!isExactParallelSharedMemAccess(consumer)) {
return true;
}
// TODO: This is directed WAR on FusionPersistentNormLocalShared.
// This use case along with other previous issues motivate a
// joint optimization of predicate removal and buffer reuse.
// In this particular case:
// __shared__ T0 [10], T1[10]
// for i in ...
// if(pred)
// T1[i] = T0[i] + ... // exp0
// T2 = 0; // init for exp1
// if(pred)
// T2 = T1 ... // exp1
// If we remove pred around expr1, as the way the pred removal
// pass is set up, the init for expr will be pushed up to
// initialize T1 instead.
// However if we initialize T1, the code will look like:
// for i in ...
// T1[i] = 0;
// for i in ...
// if(pred)
// T1[i] = T0[i] + ...
// Note that we'd be able to reuse buffer of T0 for T1 but
// if we initialze T1 we cannot do that and thus the
// kernel would not fit in smaller devices.
if (producer->getMemoryType() == MemoryType::Shared) {
if (auto producer_def = producer->definition()) {
if (std::any_of(
producer_def->inputs().begin(),
producer_def->inputs().end(),
[](Val* val) {
if (auto tv = ir_utils::getTv(val)) {
return tv->getMemoryType() == MemoryType::Shared;
}
return false;
})) {
// Disable shared memory producers that is a consumer
// of another shared memory tensor. The initialization would
// break potential opportunity to re-use shared mem buffer.
return true;
}
}
}
for (auto id : consumer->domain()->domain()) {
// TODO: (Enable in a follow up)
// smem predicate removal with init would break unroll and unswitch,
// eg. as in issue 1133, so disabling this removal pattern for now.
if (id->getParallelType() == ParallelType::Unroll ||
id->getParallelType() == ParallelType::Unswitch) {
return true;
}
// TODO: (Enable in a follow up)
// This cannot yet be removed since smem initialization needs to be
// handled specially, e.g. as in smem_reduce test. Will be able to
// lift this one once the generic pred removal pass with fusion
// traversal is ready.
auto consumer_def = consumer->definition();
if (ir_utils::isReductionOp(consumer_def)) {
if (producer->getMemoryType() == MemoryType::Shared) {
return true;
}
}
}
return false;
}
// Utility to find the leaf iterdomains of the given
// tensor view that will be treated as "zero loops"
// in the indexing pass.
// For details on zero loops, see indexMapFromTV in
// lower index pass.
std::vector<Val*> getZeroLeafIds(const TensorView* tv) const {
TORCH_INTERNAL_ASSERT(
tv->getMemoryType() == MemoryType::Local ||
tv->getMemoryType() == MemoryType::Shared,
"Local or shared memory tensor is assumed: ",
tv->toString());
bool is_shared_mem = tv->getMemoryType() == MemoryType::Shared;
std::vector<Val*> zero_leaf_ids;
for (const auto i : c10::irange(tv->nDims())) {
auto leaf_id = tv->axis(i);
if (is_shared_mem && leaf_id->isThreadDim()) {
// Thread parallel axes on shared mem are never
// zero loops as each thread owns its share
// of the shared mem space.
continue;
}
if (
// Non-thread parallel dimension on the left
// of CA axes are zero loops.
i < tv->getComputeAtPosition() ||
// Parallel axes on local mem is zero loop.
// Grid axes on shared mem is zero loop.
leaf_id->isThread() ||
// Mma axes, similar to vectorization, are
// implicit in hardware intrinsics, and thus
// will be treated as a zero loop.
leaf_id->isMma()) {
zero_leaf_ids.push_back(leaf_id);
}
}
return zero_leaf_ids;
}
// An index can exceed the logical extent of the indexed domain if
// it's split. It can cause a reduction op to reduce the same value
// multiple times. Even a pointwise op can be a problem if the
// consumer is an alias of the producer. This check excludes such
// expressions from predicate elimination.
//
// This is not an issue if the index includes a zero domain (as defined in
// index_compute.cpp), the extent is calculated by multiplying the
// split output domains, so it never cross the domain boundary.
// So, if a root domain is split and none of its descendants is a
// zero domain, the expr needs to be predicated. See
// FusionPredicateElimination6 for a concrete example.
//
// It would be also possible to avoid register aliasing instead of
// giving up predicate elimination. Since this condition should be
// rather uncommon, either would be fine as long as correctness is
// provided.
bool predicateNonDivisibleRootDomains(Expr* expr) const {
for (auto output : ir_utils::filterByType<TensorView>(expr->outputs())) {
const auto all_exprs = DependencyCheck::getAllExprsBetween(
{output->getMaybeRFactorDomain().begin(),
output->getMaybeRFactorDomain().end()},
{output->domain()->domain().begin(),
output->domain()->domain().end()});
std::unordered_set<Val*> split_root;
std::copy_if(
output->getMaybeRFactorDomain().begin(),
output->getMaybeRFactorDomain().end(),
std::inserter(split_root, split_root.end()),
[&](auto rf_root) {
if (rf_root->isBroadcast() ||
GpuLower::current()->trivialReductionInfo().isDerived(
rf_root)) {
return false;
}
for (Expr* use : rf_root->uses()) {
if (std::find(all_exprs.begin(), all_exprs.end(), use) ==
all_exprs.end()) {
continue;
}
return use->isA<Split>();
}
return false;
});
// If no root domain is split, no need to predicate
if (split_root.empty()) {
continue;
}
const auto zero_leaf_ids = getZeroLeafIds(output);
if (zero_leaf_ids.empty()) {
return true;
}
const auto vals =
DependencyCheck::getAllValsBetween(split_root, zero_leaf_ids);
if (std::any_of(
split_root.begin(),
split_root.end(),
[&vals](auto split_root_id) {
return std::find(vals.begin(), vals.end(), split_root_id) ==
vals.end();
})) {
return true;
}
}
return false;
}
// Always predicate if non-divisible split is found. It may be
// possible to make it less conservative.
// See FusionPredicateElimination7 for a concrete example.
bool predicateNonDivisibleSplit(Expr* expr) const {
const auto& non_divisible_split_info =
GpuLower::current()->nonDivisibleSplitInfo();
for (auto output : ir_utils::filterByType<TensorView>(expr->outputs())) {
if (non_divisible_split_info.splitsToPredicate().find(output) !=
non_divisible_split_info.splitsToPredicate().end()) {
return true;
}
}
return false;
}
// If this is a reduction, and if we omit the predicate for the
// input, the input may have a garbabe value, which must not be used
// for this reduction. However, it is still legal to omit its
// predicate when: 1) the predicate of the input is not omitted and
// 2) the input can be initialized to the init value of this
// reduction. When the input is the output of another reduciton, the
// input is initialized to the init value of the reduction, so the
// two reductions must use the same init value.
// See FusionPredicateElimination3 and FusionPredicateElimination4
// for concrete examples.
void handle(ReductionOp* rop) final {
auto input = rop->inputs()[0]->as<TensorView>();
auto input_def = input->definition();
// When input_def is null, input must be an input to the fusion,
// so that must be allocated on global memory. Since we don't omit
// predication for expressions involving global memory, this
// should never occur.
TORCH_INTERNAL_ASSERT(
input_def != nullptr, "Inconsistent input found: ", input->toString());
// The input needs to be initialized to the init value to omit
// the predicate, so if the input has its own init value, i.e.,
// produced by another reduction, they must use the same init
// value.
Val* input_init = ir_utils::getReductionInitValOf(input);
if (input_init != nullptr && !rop->init()->sameAs(input_init)) {
needs_predicate_ = true;
return;
}
// If input is not predicated, out-of-bound value may be
// overwritten by a garbage value. However, it doesn't matter if
// the input is also produced by another reduction. If the preceding
// reduction omits the predicate, it means its input must be
// initialized to its init value, so no predicate should be
// needed in both of the two reduction ops if they use the same
// init value, which is guaranteed by the above check, and the
// same reduction op.
if (auto input_def_rop = dynamic_cast<ReductionOp*>(input_def)) {
if (rop->getReductionOpType() != input_def_rop->getReductionOpType() &&
non_predicated_exprs_.find(input_def) !=
non_predicated_exprs_.end()) {
needs_predicate_ = true;
return;
}
} else if (
non_predicated_exprs_.find(input_def) != non_predicated_exprs_.end()) {
needs_predicate_ = true;
return;
}
}
// Welford. See FusionPredicateElimination5.
void handle(WelfordOp* wop) final {
for (const auto i : c10::irange(3)) {
auto init = wop->getInitVals()[i];
// Welford input can be a scalar. Predicate is required unless
// the scalar value is equal to the init value.
auto input = wop->inputs().at(i);
if (input->isScalar()) {
if (!input->sameAs(init)) {
needs_predicate_ = true;
return;
}
continue;
}
auto input_tv = dynamic_cast<TensorView*>(input);
TORCH_INTERNAL_ASSERT(input_tv != nullptr);
auto input_def = input->definition();
// When input_def is null, input must be an input to the fusion,
// so that must be allocated on global memory. Since we don't omit
// predication for expressions involving global memory, this
// should never occur.
TORCH_INTERNAL_ASSERT(
input_def != nullptr,
"Inconsistent input found: ",
input->toString());
// The input needs to be initialized to the init value to omit
// the predicate, so if the input has its own init value, i.e.,
// produced by another reduction, they must use the same init
// value.
Val* input_init = ir_utils::getReductionInitValOf(input_tv);
if (input_init != nullptr && !init->sameAs(input_init)) {
needs_predicate_ = true;
return;
}
// If input is not predicated, out-of-bound value may be
// overwritten by a garbage value. However, it doesn't matter if
// the input is also produced by another welford.
if (!input_def->isA<WelfordOp>() && !input_def->isA<GroupedWelfordOp>() &&
non_predicated_exprs_.find(input_def) !=
non_predicated_exprs_.end()) {
needs_predicate_ = true;
return;
}
}
}
void handle(GroupedReductionOp* grouped_rop) final {
for (const auto i : c10::irange(grouped_rop->numExprs())) {
auto input = grouped_rop->input(i)->as<TensorView>();
auto input_def = input->definition();
// When input_def is null, input must be an input to the fusion,
// so that must be allocated on global memory. Since we don't omit
// predication for expressions involving global memory, this
// should never occur.
TORCH_INTERNAL_ASSERT(
input_def != nullptr,
"Inconsistent input found: ",
input->toString());
// The input needs to be initialized to the init value to omit
// the predicate, so if the input has its own init value, i.e.,
// produced by another reduction, they must use the same init
// value.
Val* input_init = ir_utils::getReductionInitValOf(input);
if (input_init != nullptr &&
!grouped_rop->initVal(i)->sameAs(input_init)) {
needs_predicate_ = true;
return;
}
// If input is not predicated, out-of-bound value may be
// overwritten by a garbage value. However, it doesn't matter if
// the input is also produced by another reduction. If the preceding
// reduction omits the predicate, it means its input must be
// initialized to its init value, so no predicate should be
// needed in both of the two reduction ops if they use the same
// init value, which is guaranteed by the above check, and the
// same reduction op.
if (auto input_def_rop = dynamic_cast<ReductionOp*>(input_def)) {
if (grouped_rop->getReductionOpType(i) !=
input_def_rop->getReductionOpType() &&
non_predicated_exprs_.find(input_def) !=
non_predicated_exprs_.end()) {
needs_predicate_ = true;
return;
}
} else if (
auto input_def_grouped_rop =
dynamic_cast<GroupedReductionOp*>(input_def)) {
auto input_index_as_output =
input_def_grouped_rop->getExprIndexOfOutput(input);
if (grouped_rop->getReductionOpType(i) !=
input_def_grouped_rop->getReductionOpType(
input_index_as_output) &&
non_predicated_exprs_.find(input_def) !=
non_predicated_exprs_.end()) {
needs_predicate_ = true;
return;
}
} else if (
non_predicated_exprs_.find(input_def) !=
non_predicated_exprs_.end()) {
needs_predicate_ = true;
return;
}
}
}
void handle(GroupedWelfordOp* grouped_wop) final {
for (const auto expr_idx : c10::irange(grouped_wop->numExprs())) {
for (const auto val_idx : c10::irange(3)) {
auto init = grouped_wop->initVals().at(expr_idx).get(val_idx);
// Welford input can be a scalar. Predicate is required unless
// the scalar value is equal to the init value.
auto input = grouped_wop->inputVals().at(expr_idx).get(val_idx);
if (input->isScalar()) {
if (!input->sameAs(init)) {
needs_predicate_ = true;
return;
}
continue;
}
auto input_tv = dynamic_cast<TensorView*>(input);
TORCH_INTERNAL_ASSERT(input_tv != nullptr);
auto input_def = input->definition();
// When input_def is null, input must be an input to the fusion,
// so that must be allocated on global memory. Since we don't omit
// predication for expressions involving global memory, this
// should never occur.
TORCH_INTERNAL_ASSERT(
input_def != nullptr,
"Inconsistent input found: ",
input->toString());
// The input needs to be initialized to the init value to omit
// the predicate, so if the input has its own init value, i.e.,
// produced by another reduction, they must use the same init
// value.
Val* input_init = ir_utils::getReductionInitValOf(input_tv);
if (input_init != nullptr && !init->sameAs(input_init)) {
needs_predicate_ = true;
return;
}
// If input is not predicated, out-of-bound value may be
// overwritten by a garbage value. However, it doesn't matter if
// the input is also produced by another reduction op as it
// must be initialized and its initialized value is already
// found to be equal to the initil value of this op.
if (!input_def->isA<WelfordOp>() &&
!input_def->isA<GroupedWelfordOp>() &&
non_predicated_exprs_.find(input_def) !=
non_predicated_exprs_.end()) {
needs_predicate_ = true;
return;
}
}
}
}
// Similar to the above reduction constraint but for MMA
void handle(MmaOp* mma) final {
for (auto input : ir_utils::filterByType<TensorView>(mma->inputs())) {
auto input_def = input->definition();
TORCH_INTERNAL_ASSERT(
input_def != nullptr,
"Inconsistent input found: ",
input->toString());
Val* input_init = ir_utils::getReductionInitValOf(input);
if (input_init != nullptr && !mma->init()->sameAs(input_init)) {
needs_predicate_ = true;
return;
}
if (non_predicated_exprs_.find(input_def) !=
non_predicated_exprs_.end()) {
// If producer of mma is non_predicated and initialized
// with the same value. The mma should not need a
// predicate. In fact this is the only way we can
// use mma at the moment since we could not predicate
// mma ops without guaranteeing warp uniform results.
auto input_init =
GpuLower::current()->predicateElimination().getInitValue(input);
// TODO:
// clean up this to support more generic prolog fusion.
// Will need additional analysis passes on initialization
// propagation and further predicate placement on top.
// More TODO:
// Even when producer is initialized, it is still generally
// not safe to remove predicate around reduction ops if the
// producer is not predicated.
// On the other side, we do have patterns like ldmatrix->mma where
// both producer and consumer cannot be safely predicated without
// guaranteeing warp uniform results.
// This is currently a WAR and relies on validation pass to exclude
// complex prolog patterns in mma based matmul kernels. Will
// definitely need to revisit and build out predicate and
// initialization analysis pass to better handle this case.
if (input_init != nullptr && !input_init->sameAs(mma->init())) {
// This is a WAR at the moment. We would need to propagate
// initialization information from PredicateElimination
// pass to most accurately detect if the input is
// initialized correctly.
// This could also be fixed when we have the traversal
// based predicate elimination and initialization pass
// ready. Would be easy to clean up this part at that point.
needs_predicate_ = true;
return;
}
}
}
}
private:
const std::unordered_set<const Expr*>& non_predicated_exprs_;
bool needs_predicate_ = false;
};
} // namespace
bool PredicateElimination::needsPredicate(Expr* expr) const {
return PredicateChcker::needsPredicate(expr, non_predicated_exprs_);
}
void PredicateElimination::handle(Expr* expr) {
if (!ir_utils::isTvOp(expr)) {
return;
}
if (needsPredicate(expr)) {
assertOnWarpOps(expr);
return;
}
non_predicated_exprs_.insert(expr);
// Ensure all inputs have some values set at the out-of-bound
// regions
for (const auto i : c10::irange(expr->inputs().size())) {
auto input = dynamic_cast<TensorView*>(expr->inputs()[i]);
if (input == nullptr) {
continue;
}
auto input_def = input->definition();
// When input_def is null, input must be an input to the fusion,
// so that must be allocated on global memory. Since we don't omit
// predication for expressions involving global memory, this
// should never occur.
TORCH_INTERNAL_ASSERT(
input_def != nullptr, "Inconsistent input found: ", input->toString());
// If input is an output of reduction, it should be fully
// initialied as it's allocated on local memory.
if (ir_utils::isReductionOp(input_def)) {
continue;
}
if (expr->isA<ReductionOp>()) {
setReductionInitValue(input, expr->as<ReductionOp>()->init());
continue;
} else if (expr->isA<GroupedReductionOp>()) {
setReductionInitValue(input, expr->as<GroupedReductionOp>()->initVal(i));
continue;
} else if (auto wop = dynamic_cast<WelfordOp*>(expr)) {
Val* init = wop->getInitVals().at(i);
setReductionInitValue(input, init);
continue;
} else if (expr->isA<MmaOp>()) {
setReductionInitValue(input, expr->as<MmaOp>()->init());
continue;
} else if (
non_predicated_exprs_.find(input_def) != non_predicated_exprs_.end()) {
// If an input does not need a predicate either, then it should
// have some value, so no need to set a default value
continue;
} else {
// Make sure input is initialized
setDefaultInitValue(input);
}
}
}
bool PredicateElimination::setDefaultInitValue(TensorView* tv) {
auto it = init_value_map_.find(tv);
// If there's already a mapping for tv, it should be mapped to a
// zero val or a reduction init. Either case, no need to modify
// the existing mapping.
if (it == init_value_map_.end()) {
init_value_map_.insert({tv, nullptr});
}
return true;
}
bool PredicateElimination::setReductionInitValue(
TensorView* tv,
Val* reduction_init) {
TORCH_INTERNAL_ASSERT(tv != nullptr);
auto it = init_value_map_.find(tv);
if (it == init_value_map_.end()) {
init_value_map_.insert({tv, reduction_init});
return true;
}
auto existing_val = it->second;
if (existing_val == nullptr) {
// If the existing mapping returns nullptr, it means that a
// default init was set before. Overwrite with the reduction
// init val.
init_value_map_[tv] = reduction_init;
return true;
} else if (existing_val->sameAs(reduction_init)) {
return true;
} else {
TORCH_INTERNAL_ASSERT(
false,
"Incosistent setting of initialization value for t",
tv->name(),
". Prev: ",
existing_val->toString(),
", New: ",
reduction_init->toString());
return false;
}
}
bool PredicateElimination::canOmitPredicate(const Expr* expr) const {
// Predicate elimination can be disabled with
// PYTORCH_NVFUSER_DISABLE=predicate_elimination
if (isOptionDisabled(DisableOption::PredicateElimination)) {
assertOnWarpOps(expr);
return false;
}
TORCH_INTERNAL_ASSERT(expr != nullptr);
const auto out_tv = ir_utils::getTvOutput(expr);
TORCH_INTERNAL_ASSERT(out_tv != nullptr, "Not a tensor expression");
if (ir_utils::isTensorScalarFillOp(expr)) {
if (out_tv->getMemoryType() == MemoryType::Local) {
// Filling a local tensor with scalar shouldn't
// need any predicate currently.
return true;
} else if (out_tv->getMemoryType() == MemoryType::Shared) {
// A shared memory initialization should be same except
// that we'd need a predicate to guard against out of
// bound access by out of inexact threads.
return isExactParallelSharedMemAccess(out_tv);
}
}
if (non_predicated_exprs_.find(expr) != non_predicated_exprs_.end()) {
return true;
}
assertOnWarpOps(expr);
return false;
}
void PredicateElimination::propagateRemovalInfo(
const Expr* from,
const Expr* to) {
if (non_predicated_exprs_.count(from)) {
non_predicated_exprs_.insert(to);
}
}
Val* PredicateElimination::getInitValue(TensorView* tv) const {
auto it = init_value_map_.find(tv);
if (it == init_value_map_.end()) {
return nullptr;
}
auto init_val = it->second;
if (init_val == nullptr) {
// No reduction restriction. Just use zero
return GpuLower::current()->kernel()->zeroVal();
} else {
return init_val;
}
}
void PredicateElimination::build(Fusion* fusion) {
traverseFrom(fusion, fusion->outputs());
}
std::string PredicateElimination::toString() const {
std::stringstream ss;
ss << "Tensors that do not need predication:";
for (auto expr : non_predicated_exprs_) {
for (auto out : expr->outputs()) {
TORCH_INTERNAL_ASSERT(out->isA<TensorView>());
ss << " T" << out->name();
}
}
ss << "\n";
ss << "Init values:";
for (auto kv : init_value_map_) {
ss << " T" << kv.first->name() << "->";
if (kv.second == nullptr) {
ss << "<default(0)>";
} else {
ss << kv.second;
}
}
ss << "\n";
return ss.str();
}
} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch
|