1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
|
#include <torch/csrc/jit/codegen/cuda/arith.h>
#include <torch/csrc/jit/codegen/cuda/index_compute.h>
#include <torch/csrc/jit/codegen/cuda/instrumentation.h>
#include <torch/csrc/jit/codegen/cuda/ir_iostream.h>
#include <torch/csrc/jit/codegen/cuda/ir_utils.h>
#include <torch/csrc/jit/codegen/cuda/kernel_expr_evaluator.h>
#include <torch/csrc/jit/codegen/cuda/kernel_ir.h>
#include <torch/csrc/jit/codegen/cuda/lower2device.h>
#include <torch/csrc/jit/codegen/cuda/lower_index_compute.h>
#include <torch/csrc/jit/codegen/cuda/lower_shift.h>
#include <torch/csrc/jit/codegen/cuda/lower_utils.h>
#include <functional>
namespace torch {
namespace jit {
namespace fuser {
namespace cuda {
void ShiftPredicateInserter::insert(
Expr* expr,
const std::vector<kir::ForLoop*>& loops,
Bool* thread_pred,
bool within_unswitch) {
const auto gpu_lower = GpuLower::current();
TensorView* out_tv = ir_utils::getTvOutput(expr);
TORCH_INTERNAL_ASSERT(out_tv != nullptr, "Missing TensorView output");
const bool needs_shift_predicate =
gpu_lower->haloInfo().needsShiftPredicate(out_tv->definition());
if (!needs_shift_predicate) {
return;
}
// The conditional branches to create:
//
// if (shift_pred) {
// consumer = producer;
// } else {
// if (padding_pred) {
// consumer = 0;
// }
// }
kir::Predicate* thread_pred_expr = nullptr;
if (within_unswitch) {
thread_pred_expr = IrBuilder::create<kir::Predicate>(thread_pred);
}
kir::Predicate* shift_pred = within_unswitch
? thread_pred_expr
: IrBuilder::create<kir::Predicate>(
PredicateType::Shift, expr, thread_pred);
// If the expr involves a thread-block barrier, set the predicate of
// the expr with shift_pred. Since the expr is not shift, the
// padding is safe to omit.
if (ir_utils::hasBlockSync(expr, gpu_lower->threadPredMap())) {
expr->setPredicate(shift_pred);
return;
}
auto shift_ite = IrBuilder::create<kir::IfThenElse>(shift_pred);
auto& scope = loops.back()->body();
// Insert the if statement
scope.insert_before(expr, shift_ite);
// Remove the expr from the list
scope.erase(expr);
// Place the expr inside the if statement
shift_ite->thenBody().push_back(expr);
// No padding condition is required if this is within unswitch.
if (within_unswitch) {
return;
}
// Padding by zero
kir::Predicate* padding_pred = IrBuilder::create<kir::Predicate>(
PredicateType::Padding, expr, thread_pred);
auto bounds_ite = IrBuilder::create<kir::IfThenElse>(padding_pred);
const int pad_value = 0;
auto pad_expr = IrBuilder::create<UnaryOp>(
UnaryOpType::Set, out_tv, IrBuilder::create<Int>(pad_value));
bounds_ite->thenBody().push_back(pad_expr);
// Insert the else block
shift_ite->elseBody().push_back(bounds_ite);
}
int AxisHaloInfo::width() const {
return width(0) + width(1);
}
int AxisHaloInfo::width(int pos) const {
TORCH_INTERNAL_ASSERT(pos >= 0 && pos < 2);
return widths_[pos];
}
void AxisHaloInfo::setWidth(int pos, int width) {
TORCH_INTERNAL_ASSERT(pos >= 0 && pos < 2);
widths_[pos] = width;
}
void AxisHaloInfo::merge(int pos, int other) {
auto new_width = std::max(width(pos), other);
setWidth(pos, new_width);
}
void AxisHaloInfo::merge(const AxisHaloInfo& other) {
for (const auto i : c10::irange(widths_.size())) {
merge(i, other.width(i));
}
}
bool AxisHaloInfo::hasHalo() const {
return std::any_of(
widths_.begin(), widths_.end(), [](auto w) { return w != 0; });
}
std::string AxisHaloInfo::toString() const {
std::stringstream ss;
ss << "<" << width(0) << ", " << width(1) << ">";
return ss.str();
}
bool HaloInfo::hasRootAxisInfo(IterDomain* id) const {
return root_axis_map_.find(id) != root_axis_map_.end();
}
const AxisHaloInfo& HaloInfo::getRootAxisInfo(IterDomain* id) const {
// TODO: Enable this check, was failing in many tests
// TORCH_INTERNAL_ASSERT(
// id->definition() == nullptr || id->isRFactorProduct(),
// "Invalid IterDomain: ",
// id);
auto it = root_axis_map_.find(id);
TORCH_INTERNAL_ASSERT(
it != root_axis_map_.end(),
"Halo root axis info not found for ",
id->toString());
return it->second;
}
AxisHaloInfo& HaloInfo::getRootAxisInfo(IterDomain* id) {
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
return const_cast<AxisHaloInfo&>(
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
const_cast<const HaloInfo*>(this)->getRootAxisInfo(id));
}
void HaloInfo::setRootAxisInfo(
IterDomain* id,
const AxisHaloInfo& root_axis_info) {
root_axis_map_[id] = root_axis_info;
initializeFromRootAxisInfo(id);
return;
}
void HaloInfo::build(Fusion* fusion) {
const auto vals = fusion->usedMathVals();
auto tvs = ir_utils::filterByType<TensorView>(vals);
// Initialize all root axis info
for (auto tv : tvs) {
for (auto root_axis : tv->getRootDomain()) {
setRootAxisInfo(root_axis, AxisHaloInfo());
}
// Just adds a placeholder to make it not fail. Reduction and
// rfactor support is not yet in place.
if (tv->hasRFactor()) {
for (auto rf_root_axis : tv->getRFactorDomain()) {
setRootAxisInfo(rf_root_axis, AxisHaloInfo());
}
}
}
// Propagate backward halo information of root axes from fusion
// outputs to inputs
auto exprs = fusion->exprs();
for (auto it = exprs.rbegin(); it != exprs.rend(); ++it) {
auto expr = *it;
if (!expr->outputs()[0]->isA<TensorView>()) {
continue;
}
propagateRootAxisInfo(expr);
}
// Propagates halo information from root axes down to leaf axes
for (auto tv : tvs) {
build(tv->domain());
}
if (isDebugDumpEnabled(DebugDumpOption::Halo)) {
std::cout << toString() << std::endl;
}
// Note that validation requires consumer halo info
for (auto tv : tvs) {
validate(tv);
}
}
void HaloInfo::propagateRootAxisInfo(Expr* expr) {
for (auto output : expr->outputs()) {
auto out_tv = dynamic_cast<TensorView*>(output);
if (out_tv == nullptr) {
continue;
}
for (auto input : expr->inputs()) {
auto in_tv = dynamic_cast<TensorView*>(input);
if (in_tv == nullptr) {
continue;
}
propagateRootAxisInfo(in_tv, out_tv, expr);
}
}
}
void HaloInfo::propagateRootAxisInfo(
TensorView* producer,
TensorView* consumer,
Expr* expr) {
// Do not add halo to input tensors
if (producer->isFusionInput()) {
return;
}
auto c2p = PairwiseRootDomainMap(producer, consumer)
.mapConsumerToProducer(consumer->domain(), producer->domain());
const auto& c_root = consumer->getRootDomain();
for (const auto i : c10::irange(c_root.size())) {
auto c_id = c_root[i];
auto it = c2p.find(c_id);
if (it == c2p.end()) {
// nothing to propagate
continue;
}
// propagate root-axis halo info from c_id to p_id
auto p_id = it->second;
AxisHaloInfo p_info;
if (hasRootAxisInfo(p_id)) {
p_info = getRootAxisInfo(p_id);
}
const auto c_info = getRootAxisInfo(c_id);
// If the root axes are broadcast, no halo should be associated
// with them.
if (c_id->isBroadcast()) {
TORCH_INTERNAL_ASSERT(!c_info.hasHalo());
p_info.merge(c_info);
setRootAxisInfo(p_id, p_info);
continue;
} else if (p_id->isRFactorProduct()) {
TORCH_INTERNAL_ASSERT(
!c_info.hasHalo(),
"Propagating halo info to a rfactor producer domain not yet supported.");
continue;
}
// If the defining expression is shift, adjust the producer halo
// width based on the shift offset. If the shift offset is
// positive, create halo at offset zero of the producer axis so
// that the consumer can safely access the producer. If the offset
// is negative, halo is created at the other end of the axis.
// If the expr is not shift, just merge the consumer halo info
// to the producer halo info so that the producer halo can be the
// maximum of all its consumers.
if (auto shift_op = dynamic_cast<ShiftOp*>(expr)) {
const auto offset = shift_op->offset(i);
if (offset == 0) {
p_info.merge(c_info);
} else {
int pos = (offset > 0) ? 0 : 1;
p_info.merge(pos, c_info.width(pos) + std::abs(offset));
}
} else if (auto gather_op = dynamic_cast<GatherOp*>(expr)) {
const auto window_dim = gather_op->windowShape()[i];
if (window_dim == 1) {
p_info.merge(c_info);
continue;
}
const auto pad_dim0 = gather_op->padWidth()[i][0];
p_info.merge(0, c_info.width(0) + pad_dim0);
// The right-side halo is propagated as:
// consumer_right_halo + (window_dim - 1 - left_padding)
p_info.merge(1, c_info.width(1) + window_dim - 1 - pad_dim0);
} else {
p_info.merge(c_info);
}
setRootAxisInfo(p_id, p_info);
}
}
void HaloInfo::insertToInheritanceMap(
TensorDomain* td,
IterDomain* parent,
IterDomain* child) {
// Check each root domain to see if its set includes the parent. If
// so, adds the child to the same set.
bool inserted = false;
for (auto root_axis : td->getRootDomain()) {
auto it = inheritance_map_.find(root_axis);
if (it == inheritance_map_.end()) {
continue;
}
auto& id_set = it->second;
if (id_set.find(parent) != id_set.end()) {
id_set.insert(child);
inserted = true;
}
}
// No matching set found. This should not happen.
TORCH_INTERNAL_ASSERT(inserted);
}
void HaloInfo::initializeFromRootAxisInfo(IterDomain* id) {
TORCH_INTERNAL_ASSERT(hasRootAxisInfo(id));
const auto& halo_info = getRootAxisInfo(id);
auto halo_width = halo_info.width();
if (!halo_info.hasHalo()) {
setHaloWidth(id, 0);
return;
}
auto expanded_extent =
IrBuilder::addExpr(id->extent(), IrBuilder::create<Int>(halo_width));
extent_map_[id] = expanded_extent;
halo_width_map_[id] = halo_width;
inheritance_map_[id] = {id};
}
void HaloInfo::setHaloWidth(IterDomain* id, int halo_width) {
halo_width_map_[id] = halo_width;
}
// Propagate extent information from root axes to descendants
void HaloInfo::build(TensorDomain* td) {
auto exprs = DependencyCheck::getAllExprsBetween(
{td->getMaybeRFactorDomain().begin(), td->getMaybeRFactorDomain().end()},
{td->domain().begin(), td->domain().end()});
// Track IDs that are generated by merging halo-extended IDs
std::unordered_set<IterDomain*> merged_shifted_ids;
// Propagate halo information by traversing IterDomain
// expressions. We populate extent_map_ and
// halo_width_map_.
// - extent_map_ maps to Expr* representing the
// extent of each axis including its halo. If no mapping exists for
// a particular axis in extent_map_, it means the axis does not have
// halo.
// - halo_width_map_ just maps to the integer size of the halo,
// which is used for extent comparison (e.g., extentLessEqual).
//
// - When expr is split: if the halo width of the input axis is
// zero, both the split outputs get zero halo in halo_width_map_. No
// mapping is added for extent_map_. Otherwise, the halo is
// propagated only to the inner output, so the inner output gets the
// same halo width and its mapping is created in extent_map_.
//
// One major assumption here is that splitting an axis that is
// an output of merging halo-extended axes is not allowed. This is
// because it is unclear how to split the halo part of the merged
// axis. This is unlikely to be a real limitation in practice.
//
// - When expr is merge: if either of the inputs has halo, a mapping
// for the output is created in extent_map_. No mapping is created
// for halo_width_map_ (see the comment on HaloInfo::halo_width_map_
// in lower_shift.h). If both of them don't have halo, just adds a
// new mapping of the output to zero in halo_width_map_. Also adds
// it to a set (merged_shifted_ids) to track which axes are merge
// outputs of halo-extended axes.
for (auto expr : exprs) {
if (auto split = dynamic_cast<Split*>(expr)) {
// Merge-then-split of halo-extended IDs is not allowed
TORCH_INTERNAL_ASSERT(
merged_shifted_ids.find(split->in()) == merged_shifted_ids.end(),
"Splitting IterDomain that is a merged domain of halo-extended domains is not allowed");
auto in_id = split->in();
// If no halo info is found, nothing needs to be done. This ID
// must be an ancestor of a domain set by setRootAxisInfo.
if (!hasHaloWidth(in_id)) {
continue;
}
const auto halo_width = getHaloWidth(in_id);
if (halo_width == 0) {
setHaloWidth(split->outer(), 0);
setHaloWidth(split->inner(), 0);
continue;
}
// propagate to inner domain
auto out_id = split->inner();
auto expanded_extent =
SimplifyingIrBuilder::addExpr(out_id->extent(), halo_width);
extent_map_.insert({out_id, expanded_extent});
setHaloWidth(split->outer(), 0);
setHaloWidth(split->inner(), halo_width);
insertToInheritanceMap(td, in_id, split->inner());
} else if (auto merge = dynamic_cast<Merge*>(expr)) {
// If either of the two inputs has halo extension, propagate it
// to the merged output ID
auto inner_extent = getExtent(merge->inner());
auto outer_extent = getExtent(merge->outer());
if (inner_extent != nullptr || outer_extent != nullptr) {
if (inner_extent == nullptr) {
inner_extent = merge->inner()->extent();
} else {
insertToInheritanceMap(td, merge->inner(), merge->out());
}
if (outer_extent == nullptr) {
outer_extent = merge->outer()->extent();
} else {
insertToInheritanceMap(td, merge->outer(), merge->out());
}
auto expanded_extent =
SimplifyingIrBuilder::mulExpr(outer_extent, inner_extent);
extent_map_.insert({merge->out(), expanded_extent});
// Splitting the output of this merge is not allowed, so
// remember it
merged_shifted_ids.insert(merge->out());
// Note that halo_width_map_ is not updated
} else {
setHaloWidth(merge->out(), 0);
}
} else if (expr->getExprType().value() == ExprType::Swizzle2D) {
// Assume no halo on swizzled domain for now.
for (auto id : ir_utils::filterByType<IterDomain>(expr->outputs())) {
setHaloWidth(id, 0);
}
} else {
TORCH_INTERNAL_ASSERT(false, "Unsupported expr: ", expr);
}
}
}
//! Restriction 1: When allocation is outside of a shifted
//! axis, the shifted axis must be guaranteed to have a smaller extent
//! than the concrete axis. For now, shifted axes always mean expanded
//! allocations when the axis is located inside the allocation
//! point. This restriction is validated at the allocation lowering
//! pass.
//!
//! Restriction 2: If an expanded axis is parallelized, its memory
//! must be accessible by all other threads. More specifically:
//! - TIDx: It must be on shared memory. May want to consider
//! utilizing the shuffle instructions as well.
//! - BIDx: Not supported. If on global memory, Cooperative Launch
//! may be used to support it, however, it's unclear in what
//! situations block-level parallelization should be used.
//!
//! Other types of parallelization should be supported except for
//! vectorization. Vectorization should be eventually supported but
//! needs further work.
void HaloInfo::validate(TensorView* tv) const {
const auto mem_type = tv->getMemoryType();
for (auto axis : tv->domain()->domain()) {
auto concrete_id = GpuLower::current()->caMap()->getConcreteMappedID(
axis, IdMappingMode::LOOP);
// The extent is assumed to be the same
TORCH_INTERNAL_ASSERT(
extentEqual(axis, concrete_id),
"Axis does not have the same exact size with its concrete ID due to halo extension.",
" Tensor: T",
tv->name(),
", Axis: ",
axis,
", concrete ID: ",
concrete_id);
auto halo_extent = getExtent(axis);
// If no halo extent is associated with this axis, it means the
// axis is not extended.
if (halo_extent == nullptr) {
continue;
}
// Enforce restrictions on parallelization and memory type
const auto ptype = concrete_id->getParallelType();
if (ptype == ParallelType::Serial) {
continue;
}
// Only threading parallelism is considered for now
TORCH_CHECK(
isParallelTypeThread(ptype), "Unsupported parallel type: ", ptype);
bool shared_mem_needed = false;
for (auto use : tv->uses()) {
if (!ir_utils::isTvOp(use)) {
continue;
}
if (use->isA<ShiftOp>() || use->isA<GatherOp>()) {
shared_mem_needed = true;
break;
}
auto consumer = use->outputs()[0]->as<TensorView>();
// Find the corresponding axis in the consumer
auto it = std::find_if(
consumer->domain()->domain().begin(),
consumer->domain()->domain().end(),
[&](IterDomain* consumer_axis) {
return GpuLower::current()->caMap()->areMapped(
axis, consumer_axis, IdMappingMode::PERMISSIVE);
});
if (it == consumer->domain()->domain().end()) {
continue;
}
if (!extentEqual(axis, *it)) {
shared_mem_needed = true;
break;
}
}
if (!shared_mem_needed) {
continue;
}
if (isParallelTypeThreadDim(ptype)) {
// If all the consumers have the same extent and none of the
// expressions is shift, any memory should be fine. Otherwise, it
// must be accessible by all threads involved in the
// parallelization.
TORCH_CHECK(
mem_type == MemoryType::Shared,
"TV",
tv->name(),
" must be allocated on shared memory as its halo-extended axis is parallelized by ",
ptype);
} else if (isParallelTypeBlockDim(ptype)) {
TORCH_CHECK(
false,
"Block-based parallelization of a halo-extended axis is not supported: ",
axis);
}
}
return;
}
Val* HaloInfo::getExtent(IterDomain* id) const {
auto it = extent_map_.find(id);
if (it != extent_map_.end()) {
return it->second;
} else {
return nullptr;
}
}
int HaloInfo::getHaloWidth(IterDomain* id) const {
auto it = halo_width_map_.find(id);
TORCH_INTERNAL_ASSERT(it != halo_width_map_.end());
return it->second;
}
bool HaloInfo::hasHaloWidth(IterDomain* id) const {
return halo_width_map_.find(id) != halo_width_map_.end();
}
const std::unordered_set<IterDomain*>& HaloInfo::getChildDomains(
IterDomain* root_id) const {
auto it = inheritance_map_.find(root_id);
TORCH_INTERNAL_ASSERT(
it != inheritance_map_.end(),
"Domain not found in the inheritance map: ",
root_id);
return it->second;
}
bool HaloInfo::isHaloInherited(IterDomain* root_id, IterDomain* id) const {
return getChildDomains(root_id).count(id) > 0;
}
std::unordered_set<IterDomain*> HaloInfo::getRootDomains(IterDomain* id) const {
std::unordered_set<IterDomain*> id_set;
for (const auto& kv : inheritance_map_) {
if (kv.second.count(id) > 0) {
id_set.insert(kv.first);
}
}
return id_set;
}
namespace {
//! Prove if the comparison operator, cmp, is true with the extents of
//! id1 and id2, including their halo. The comparison is done
//! conservatively, meaning false negative is possible.
//!
//! It is assumed that id1 and id2 are mapped with the CA Loop map, so
//! what is checked here is only about halo
//! sizes using HaloInfo::halo_width_map_. Since it does not have
//! mappings for merged axes, each axis of merge inputs are
//! individually compared, and only when both of the input axes
//! return true, the merge output axis returns true.
template <typename Cmp>
bool extentCompare(
const HaloInfo& halo_map,
IterDomain* id1,
IterDomain* id2,
Cmp cmp) {
auto gpu_lower = GpuLower::current();
TORCH_INTERNAL_ASSERT(
gpu_lower->caMap()->areMapped(id1, id2, IdMappingMode::PERMISSIVE),
"Invalid axes to compare");
// It's invalid to compare two axes and when only either of them has
// halo.
if (halo_map.hasHaloWidth(id1)) {
TORCH_INTERNAL_ASSERT(
halo_map.hasHaloWidth(id2), "Invalid comparison: ", id1, " and ", id2);
// Both axes have halo. We assume the axes themselves have equal
// extents, excluding halo, as they are mapped with the CA
// map. So, we just need to compare the halo width of each axis.
return cmp(halo_map.getHaloWidth(id1), halo_map.getHaloWidth(id2));
} else {
TORCH_INTERNAL_ASSERT(!halo_map.hasHaloWidth(id2));
// Both don't have halo. The only case this can happen must be
// both axes are the output of a merge expression, so each merge
// input is recursively compared, and returns true only when both
// inputs return.
if (auto merge1 = dynamic_cast<Merge*>(id1->definition())) {
auto merge2 = dynamic_cast<Merge*>(id2->definition());
TORCH_INTERNAL_ASSERT(
merge2 != nullptr, "Invalid comparison: ", id1, " and ", id2);
auto inner_le =
extentCompare(halo_map, merge1->inner(), merge2->inner(), cmp);
auto outer_le =
extentCompare(halo_map, merge1->outer(), merge2->outer(), cmp);
return inner_le && outer_le;
} else {
// This is not considered. Should never reach here.
TORCH_INTERNAL_ASSERT(false, "Invalid comparison: ", id1, " and ", id2);
}
}
}
} // namespace
bool HaloInfo::extentLessEqual(IterDomain* id1, IterDomain* id2) const {
return extentCompare(*this, id1, id2, std::less_equal<>());
}
bool HaloInfo::extentEqual(IterDomain* id1, IterDomain* id2) const {
return extentCompare(*this, id1, id2, std::equal_to<>());
}
std::string HaloInfo::toString() const {
std::stringstream ss;
ss << "HaloInfo:\n";
if (root_axis_map_.empty()) {
return ss.str();
}
Fusion* fusion = root_axis_map_.begin()->first->fusion();
auto used_vals = DependencyCheck::getAllValsBetween(
{fusion->inputs().begin(), fusion->inputs().end()}, fusion->outputs());
for (auto tv : ir_utils::filterByType<TensorView>(used_vals)) {
const auto& root = tv->getRootDomain();
ss << "TV" << tv->name() << " root domain: ";
for (auto axis : root) {
ss << axis << " -> " << getRootAxisInfo(axis).toString() << ", ";
}
ss << "\n";
}
return ss.str();
}
bool HaloInfo::needsShiftPredicate(Expr* expr) const {
// In lowering shift and gather turn into a unary op. We really need the shift
// expr. Do a round about trick to grab it:
auto tv_out = ir_utils::getTvOutput(expr);
auto consumer_td = tv_out->domain();
auto shift_expr = dynamic_cast<ShiftOp*>(tv_out->definition());
auto gather_expr = dynamic_cast<GatherOp*>(tv_out->definition());
for (const auto i : c10::irange(consumer_td->getRootDomain().size())) {
auto consumer_id = consumer_td->getRootDomain()[i];
const auto consumer_halo_info = getRootAxisInfo(consumer_id);
if (consumer_halo_info.hasHalo() ||
(shift_expr != nullptr && shift_expr->offset(i) != 0 &&
!consumer_id->isBroadcast()) ||
(gather_expr != nullptr && gather_expr->windowShape()[i] != 1 &&
!consumer_id->isBroadcast())) {
return true;
}
}
return false;
}
std::unordered_map<IterDomain*, Val*> HaloInfo::buildConcreteHaloExtentMap(
const LoopIndexing& loop_indexing) {
// Use a local workspace to avoid re-defining halo info.
HaloInfo local_halo_info;
auto& global_halo_info = GpuLower::current()->haloInfo();
// Setup root:
for (auto consumer_root_id : loop_indexing.consumerTv()->getRootDomain()) {
auto consumer_index_concrete_id =
ir_utils::caMapExactConcreteId(consumer_root_id);
local_halo_info.setRootAxisInfo(
consumer_index_concrete_id,
global_halo_info.getRootAxisInfo(consumer_root_id));
}
// Track IDs that are generated by merging halo-extended IDs
std::unordered_set<IterDomain*> merged_shifted_ids;
for (auto expr : loop_indexing.getForwardExprList()) {
if (auto split = dynamic_cast<Split*>(expr)) {
// Merge-then-split of halo-extended IDs is not allowed
TORCH_INTERNAL_ASSERT(
merged_shifted_ids.find(split->in()) == merged_shifted_ids.end(),
"Splitting IterDomain that is a merged domain of halo-extended domains is not allowed");
auto in_id = ir_utils::caMapExactConcreteId(split->in());
// If no halo info is found, nothing needs to be done. This ID
// must be an ancestor of a domain set by setRootAxisInfo.
if (!local_halo_info.hasHaloWidth(in_id)) {
continue;
}
const auto halo_width = local_halo_info.getHaloWidth(in_id);
if (halo_width == 0) {
local_halo_info.setHaloWidth(
ir_utils::caMapExactConcreteId(split->outer()), 0);
local_halo_info.setHaloWidth(
ir_utils::caMapExactConcreteId(split->inner()), 0);
continue;
}
// propagate to inner domain
auto out_id = ir_utils::caMapExactConcreteId(split->inner());
auto expanded_extent =
SimplifyingIrBuilder::addExpr(out_id->extent(), halo_width);
local_halo_info.extent_map_.insert({out_id, expanded_extent});
local_halo_info.setHaloWidth(
ir_utils::caMapExactConcreteId(split->outer()), 0);
local_halo_info.setHaloWidth(
ir_utils::caMapExactConcreteId(split->inner()), halo_width);
// TODO: add support for inheritance map
} else if (auto merge = dynamic_cast<Merge*>(expr)) {
// If either of the two inputs has halo extension, propagate it
// to the merged output ID
auto inner_extent = local_halo_info.getExtent(
ir_utils::caMapExactConcreteId(merge->inner()));
auto outer_extent = local_halo_info.getExtent(
ir_utils::caMapExactConcreteId(merge->outer()));
if (inner_extent != nullptr || outer_extent != nullptr) {
if (inner_extent == nullptr) {
inner_extent = merge->inner()->extent();
}
if (outer_extent == nullptr) {
outer_extent = merge->outer()->extent();
}
auto expanded_extent =
SimplifyingIrBuilder::mulExpr(outer_extent, inner_extent);
local_halo_info.extent_map_.insert(
{ir_utils::caMapExactConcreteId(merge->out()), expanded_extent});
// Splitting the output of this merge is not allowed, so
// remember it
merged_shifted_ids.insert(ir_utils::caMapExactConcreteId(merge->out()));
// Note that halo_width_map_ is not updated
} else {
setHaloWidth(ir_utils::caMapExactConcreteId(merge->out()), 0);
}
} else if (auto swizzle_2d = dynamic_cast<Swizzle2D*>(expr)) {
// Swizzle with halo not yet supported, just set the width
// to zero at the moment.
TORCH_INTERNAL_ASSERT(
local_halo_info.getHaloWidth(
ir_utils::caMapExactConcreteId(swizzle_2d->inX())) == 0 &&
local_halo_info.getHaloWidth(
ir_utils::caMapExactConcreteId(swizzle_2d->inY())) == 0,
"Swizzle on ID with halo not yet supported.");
TORCH_INTERNAL_ASSERT("Swizzle on ID with halo not yet supported.");
local_halo_info.setHaloWidth(
ir_utils::caMapExactConcreteId(swizzle_2d->outX()), 0);
local_halo_info.setHaloWidth(
ir_utils::caMapExactConcreteId(swizzle_2d->outY()), 0);
} else {
TORCH_INTERNAL_ASSERT(false, "Unsupported expr: ", expr);
}
}
return local_halo_info.extent_map_;
}
} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch
|