1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
|
#include <torch/csrc/jit/codegen/cuda/lower_unroll.h>
#include <torch/csrc/jit/codegen/cuda/arith.h>
#include <torch/csrc/jit/codegen/cuda/index_compute.h>
#include <torch/csrc/jit/codegen/cuda/instrumentation.h>
#include <torch/csrc/jit/codegen/cuda/ir_iostream.h>
#include <torch/csrc/jit/codegen/cuda/ir_utils.h>
#include <torch/csrc/jit/codegen/cuda/kernel_expr_evaluator.h>
#include <torch/csrc/jit/codegen/cuda/lower2device.h>
#include <torch/csrc/jit/codegen/cuda/lower_misaligned_vectorization.h>
#include <torch/csrc/jit/codegen/cuda/lower_utils.h>
#include <torch/csrc/jit/codegen/cuda/predicate_compute.h>
namespace torch {
namespace jit {
namespace fuser {
namespace cuda {
namespace {
// Provide a new for loop matching the one provided
kir::ForLoop* cloneLoopNest(const kir::ForLoop* for_loop) {
const auto new_loop = IrBuilder::create<kir::ForLoop>(for_loop);
for (auto expr : for_loop->body().exprs()) {
if (auto nested_for_loop = dynamic_cast<kir::ForLoop*>(expr)) {
expr = cloneLoopNest(nested_for_loop);
}
new_loop->body().push_back(expr);
}
return new_loop;
}
// Returns true if expr is an expression that initializes a reduction
// buffer.
bool isReductionInitExpr(const Expr* expr) {
// False if its output isn't a TensorView
if (!ir_utils::isTvOp(expr)) {
return false;
}
// False if it doesn't have any reduction axis
const auto out_tv = expr->outputs()[0]->as<TensorView>();
if (!out_tv->domain()->hasReduction()) {
return false;
}
// False if it has have TensorView inputs as initialization should
// never use TensorViews
const auto tv_filter_inp_view =
ir_utils::filterByType<TensorView>(expr->inputs());
if (tv_filter_inp_view.begin() != tv_filter_inp_view.end()) {
return false;
}
return true;
}
} // namespace
void UnrollPass::handle(Expr* expr) {
if (ir_utils::isTvOp(expr)) {
// If tv op, predicate it
const auto out_tv = ir_utils::getTvOutput(expr);
const bool should_predicate = !for_loops_.empty() ||
out_tv->getMemoryType() == MemoryType::Global ||
out_tv->getMemoryType() == MemoryType::Shared;
if (!should_predicate) {
return;
}
const auto thread_pred = isReductionInitExpr(expr)
? GpuLower::current()->kernel()->trueVal()
: GpuLower::current()->threadPredMap().getPredicate(out_tv);
// When this expr is in an unswitched block, only attach the
// thread predicate to the expr as thread predicates are not
// grouped to the unswitch predicate.
kir::Predicate* thread_pred_expr = nullptr;
if (unswitched_loop_) {
thread_pred_expr = IrBuilder::create<kir::Predicate>(thread_pred);
}
non_trivial_pred_found_ = true;
// When a predicate needs to account for ShiftOp, it is currently
// taken care by its own function.
if (GpuLower::current()->haloInfo().needsShiftPredicate(expr)) {
ShiftPredicateInserter::insert(
expr, for_loops_, thread_pred, unswitched_loop_);
return;
}
// Reduction may need a separate predicate for writes.
if (!isReductionInitExpr(expr) && out_tv->domain()->hasReduction()) {
const auto write_pred = unswitched_loop_
? thread_pred_expr
: IrBuilder::create<kir::Predicate>(
PredicateType::ReductionWrite, expr, thread_pred);
expr->setWritePredicate(write_pred);
}
// For expr calling a device func with block sync, don't create
// if-then-else but pass the predicate to the device func
if (ir_utils::hasBlockSync(expr, GpuLower::current()->threadPredMap())) {
const auto pred = unswitched_loop_
? thread_pred_expr
: IrBuilder::create<kir::Predicate>(
PredicateType::Inline, expr, thread_pred);
expr->setPredicate(pred);
return;
}
// Vectorized expressions should never use inline predicates
kir::Predicate* pred = nullptr;
if (!unswitched_loop_ &&
std::any_of(
for_loops_.begin(), for_loops_.end(), [](const kir::ForLoop* fl) {
return fl->iter_domain()->getParallelType() ==
ParallelType::Vectorize;
})) {
pred = IrBuilder::create<kir::Predicate>(PredicateType::Vectorize);
}
if (pred == nullptr) {
pred = unswitched_loop_ ? thread_pred_expr
: IrBuilder::create<kir::Predicate>(
PredicateType::Inline, expr, thread_pred);
}
// If we need a predicate, put expr inside an if then else
kir::IfThenElse* inline_ite = IrBuilder::create<kir::IfThenElse>(pred);
if (for_loops_.empty()) {
// Special handling for top level output expressions that still
// need predicates. One motivating example is a reduction op that
// reduces to a scalar (issue #491)
kir::ExprMutator::registerReplace(expr, inline_ite, nullptr);
} else {
kir::ExprMutator::registerReplace(
expr, inline_ite, &for_loops_.back()->body());
}
inline_ite->thenBody().push_back(expr);
} else if (auto for_loop = dynamic_cast<kir::ForLoop*>(expr)) {
handle(for_loop);
}
}
// We should factor our actual predicate generation from unrolling but insering
// IR nodes "unroll_pred" or "inline_pred", then generate those later.
void UnrollPass::handle(kir::ForLoop* fl) {
// Setup for loop scoping
const bool is_unroll =
fl->iter_domain()->getParallelType() == ParallelType::Unroll ||
fl->iter_domain()->getParallelType() == ParallelType::Unswitch;
// If we're not looking for an unroll loop, or didn't find one, process as
// normal.
if (!is_unroll || !look_for_unroll_) {
for_loops_.push_back(fl);
// Make copy of exprs because we replace them inplace in fl
const auto exprs_copy = fl->body().exprs();
// Skip Misaligned Vectorization For-Loops here
if (!containsAnyDirectChildMisalignedVectorize(fl)) {
for (auto expr : exprs_copy) {
handle(expr);
}
}
for_loops_.pop_back();
return;
}
auto unroll_pred = IrBuilder::create<kir::Predicate>(fl);
kir::IfThenElse* unroll_ite = IrBuilder::create<kir::IfThenElse>(unroll_pred);
// Get the loop nest for the unrolled path
kir::ForLoop* unrolled_loop_nest = cloneLoopNest(fl);
// Thread predicates are not removed from the expressions. Visit
// each expression to attach kir::Predicate.
unswitched_loop_ = true;
look_for_unroll_ = false;
handle(unrolled_loop_nest);
unswitched_loop_ = false;
look_for_unroll_ = true;
unroll_ite->thenBody().push_back(unrolled_loop_nest);
// Loop nest for inlined path
kir::ForLoop* inlined_loop = cloneLoopNest(fl);
// Add inline predicates for inlined loop nest
look_for_unroll_ = false;
non_trivial_pred_found_ = false;
handle(inlined_loop);
look_for_unroll_ = true;
if (!non_trivial_pred_found_) {
kir::ExprMutator::registerReplace(
fl,
inlined_loop,
for_loops_.empty() ? nullptr : &for_loops_.back()->body());
} else {
if (!canOmitElseClause(fl)) {
unroll_ite->elseBody().push_back(inlined_loop);
}
kir::ExprMutator::registerReplace(
fl,
unroll_ite,
for_loops_.empty() ? nullptr : &for_loops_.back()->body());
}
}
bool UnrollPass::canOmitElseClause(kir::ForLoop* fl) {
kir::ExpressionEvaluator eval;
std::vector<kir::ForLoop*> loops({fl});
const auto& pred_map = GpuLower::current()->threadPredMap();
while (loops.size() > 0) {
auto loop = loops.back();
loops.pop_back();
// If there's any expression that requires barrier
// synchronization, the else part can't be omitted
for (auto expr : loop->body().exprs()) {
if (ir_utils::hasBlockSync(expr, pred_map)) {
return false;
}
}
// If the number of visits of the loop body per thread is one, the
// unswitch predicate is sufficient.
// When the loop stop is the same as the extent of its IterDomain,
// the per-thread visit count is guaranteed to be one at most (see
// CudaKernelGenerator::handle(kir::ForLoop*) as well. Also, when a
// loop is vectorized (not misaligned), the count must be one at
// most. Even if not parallelized nor vectoirzed, it is also
// sufficient if the loop stop is in fact one.
bool visit_once = false;
auto id = loop->iter_domain();
if ((id->isThread() && (loop->stop() == id->extent())) ||
id->getParallelType() == ParallelType::Vectorize) {
visit_once = true;
}
if (!visit_once) {
const auto result = eval.evaluate(loop->stop());
if (result.has_value() && result.value() == 1) {
visit_once = true;
}
}
// The visit count is not guaranteed to be one, so the else part
// must be created.
if (!visit_once) {
return false;
}
// The unswitch predicate is sufficient for this loop. Proceed to
// nested loops.
for (auto nested_loop :
ir_utils::filterByType<kir::ForLoop>(loop->body().exprs())) {
loops.push_back(nested_loop);
}
}
return true;
}
// Generate the loop nest structure and place it in lowered_exprs
UnrollPass::UnrollPass(const std::vector<Expr*>& exprs) {
FUSER_PERF_SCOPE("GpuLower::Lower::UnrollPass::computeMap");
kir::ExprMutator::traverseAndInsert(exprs);
}
std::vector<Expr*> UnrollPass::runPass(
Fusion* fusion,
const std::vector<Expr*>& exprs) {
FUSER_PERF_SCOPE("GpuLower::Lower::UnrollPass::runPass");
UnrollPass unroll_pass(exprs);
return unroll_pass.exprs_;
}
} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch
|