1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
|
#include <torch/csrc/jit/codegen/cuda/lower_utils.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/util/irange.h>
#include <torch/csrc/jit/codegen/cuda/arith.h>
#include <torch/csrc/jit/codegen/cuda/ir_iostream.h>
#include <torch/csrc/jit/codegen/cuda/ir_utils.h>
#include <torch/csrc/jit/codegen/cuda/iter_visitor.h>
#include <torch/csrc/jit/codegen/cuda/kernel_ir_dispatch.h>
#include <torch/csrc/jit/codegen/cuda/lower2device.h>
#include <torch/csrc/jit/codegen/cuda/lower_thread_predicate.h>
#include <torch/csrc/jit/codegen/cuda/root_domain_map.h>
#include <algorithm>
// TODO: refactor this file (one per namespace)
namespace torch {
namespace jit {
namespace fuser {
namespace cuda {
namespace scope_utils {
//! Create an **empty** Forloop and copy the metadata.
kir::ForLoop* cloneForLoop(kir::ForLoop* for_loop) {
return IrBuilder::create<kir::ForLoop>(for_loop);
}
//! Create an **empty** IfThenElse and copy the metadata.
kir::IfThenElse* cloneIfThenElse(kir::IfThenElse* ite) {
return IrBuilder::create<kir::IfThenElse>(ite->predicate());
}
} // namespace scope_utils
namespace ir_utils {
TVDomainGuard::TVDomainGuard(TensorView* _tv, TensorDomain* td)
: tv_(_tv), prev_domain(tv_->domain()) {
tv_->setDomain(td);
}
TVDomainGuard::~TVDomainGuard() {
tv_->setDomain(prev_domain);
}
std::vector<IterDomain*> iterDomainInputsOf(
const std::vector<IterDomain*>& input_ids,
const std::vector<IterDomain*>& all_inputs) {
auto inputs = IterVisitor::getInputsTo(
{input_ids.begin(), input_ids.end()},
{all_inputs.begin(), all_inputs.end()});
std::vector<IterDomain*> id_inputs(
ir_utils::filterByType<IterDomain>(inputs).begin(),
ir_utils::filterByType<IterDomain>(inputs).end());
return id_inputs;
}
std::vector<IterDomain*> iterDomainInputsOfOrderedAs(
const std::vector<IterDomain*>& of,
const std::vector<IterDomain*>& order) {
auto inputs_vec = iterDomainInputsOf(of, order);
std::unordered_set<IterDomain*> inputs_set(
inputs_vec.begin(), inputs_vec.end());
std::vector<IterDomain*> ordered_inputs;
std::copy_if(
order.begin(),
order.end(),
std::back_inserter(ordered_inputs),
[&inputs_set](const auto& id) {
return inputs_set.find(id) != inputs_set.end();
});
return ordered_inputs;
}
bool isTV(const Val* val) {
return val->getValType().value() == ValType::TensorView ||
val->getValType().value() == ValType::TensorIndex;
}
// Check if we're a TensorView op that we can generate code for.
bool isTvOp(const Expr* expr) {
if (std::any_of(
expr->outputs().begin(),
expr->outputs().end(),
[](Val* v) { return isTV(v); }) &&
(expr->getExprType().value() == ExprType::UnaryOp ||
expr->getExprType().value() == ExprType::BinaryOp ||
expr->getExprType().value() == ExprType::TernaryOp ||
expr->getExprType().value() == ExprType::RNGOp ||
expr->getExprType().value() == ExprType::ARangeOp ||
expr->getExprType().value() == ExprType::ReductionOp ||
expr->getExprType().value() == ExprType::GroupedReductionOp ||
expr->getExprType().value() == ExprType::WelfordOp ||
expr->getExprType().value() == ExprType::GroupedWelfordOp ||
expr->getExprType().value() == ExprType::LoadStoreOp ||
expr->getExprType().value() == ExprType::MmaOp ||
expr->getExprType().value() == ExprType::BroadcastOp ||
expr->getExprType().value() == ExprType::TransposeOp ||
expr->getExprType().value() == ExprType::ExpandOp ||
expr->getExprType().value() == ExprType::ShiftOp ||
expr->getExprType().value() == ExprType::GatherOp ||
expr->getExprType().value() == ExprType::ViewAsScalar ||
expr->getExprType().value() == ExprType::ViewOp ||
expr->getExprType().value() == ExprType::GridReduction ||
expr->getExprType().value() == ExprType::GroupedGridReduction ||
expr->getExprType().value() == ExprType::GridBroadcast ||
expr->getExprType().value() == ExprType::GridWelford ||
expr->getExprType().value() == ExprType::GroupedGridWelford)) {
return true;
}
return false;
}
bool isLdMatrixOp(const Expr* expr) {
if (auto ldst = dynamic_cast<const LoadStoreOp*>(expr)) {
return ldst->opType() == LoadStoreOpType::LdMatrix ||
ldst->opType() == LoadStoreOpType::LdMatrixTranspose;
}
return false;
}
bool isCpAsyncOp(const Expr* expr) {
if (auto ldst = dynamic_cast<const LoadStoreOp*>(expr)) {
return ldst->opType() == LoadStoreOpType::CpAsync;
}
return false;
}
bool isTensorScalarFillOp(const Expr* expr) {
// Check that the input is a single scalar.
if (expr->inputs().size() == 1 && expr->input(0)->isScalar()) {
// All load store op with a single scalar input
// should be a scalar filling op. Semantically
// it literally means `Store`'ing a scalar
// into a tensor.
if (expr->isA<LoadStoreOp>()) {
return true;
}
// Unary copy op is also a scalar filling op.
if (auto uop = dynamic_cast<const UnaryOp*>(expr)) {
return uop->getUnaryOpType() == UnaryOpType::Set;
}
}
// Ideally any scalar expression that outputs
// to a tensor should be considered in this function
// but since we currently only limit scope to
// initialization patterns so other scalar expr's
// are low priority and are excluded here to avoid confusion.
return false;
}
TensorView* getTv(Val* val) {
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
return const_cast<TensorView*>(getTv(const_cast<const Val*>(val)));
}
const TensorView* getTv(const Val* val) {
if (val->isA<TensorView>()) {
return val->as<TensorView>();
} else if (val->isA<kir::TensorIndex>()) {
return val->as<kir::TensorIndex>()->view();
}
return nullptr;
}
std::vector<TensorView*> getTvs(const std::vector<Val*>& vals) {
std::vector<TensorView*> tvs;
for (auto val : vals) {
auto tv = ir_utils::getTv(val);
if (tv) {
tvs.emplace_back(tv);
}
}
return tvs;
}
TensorView* getTvOutput(const Expr* expr) {
for (auto out : expr->outputs()) {
if (auto tv = getTv(out)) {
return tv;
}
}
return nullptr;
}
TensorView* getTvInput(const Expr* expr) {
for (auto inp : expr->inputs()) {
if (auto tv = getTv(inp)) {
return tv;
}
}
return nullptr;
}
bool isScalarOp(const Expr* expr) {
for (auto out : expr->outputs())
if (!out->isScalar())
return false;
return true;
}
bool hasBlockSync(const Expr* expr, const ThreadPredicateMap& pred_map) {
if (expr->isA<kir::BlockSync>()) {
return true;
}
if (!isTvOp(expr)) {
return false;
}
if (!(isReductionOp(expr) || expr->isA<BroadcastOp>() ||
expr->isA<kir::GridBroadcast>())) {
return false;
}
// GroupedReductionOp can have multiple output TVs, but they must be
// parallelized in the same way, so just checking one of them is enough.
auto tv = getTvOutput(expr);
if (tv->hasBlockReduction() || tv->hasGridReduction()) {
return true;
} else if (expr->isA<BroadcastOp>()) {
const ParallelTypeBitmap pt_map =
GpuLower::current()->threadPredMap().getParallelBroadcastDomains(tv);
return pt_map.any();
}
return false;
}
c10::optional<IterDomain*> getMaybeWarpReductionDim(
const Val* output,
const Val* input) {
auto tv_out = getTv(output);
if (tv_out == nullptr) {
return c10::nullopt;
}
auto tv_in = getTv(input);
// only support reducing to registers for now.
if (tv_in->getMemoryType() != MemoryType::Local ||
tv_out->getMemoryType() != MemoryType::Local) {
return c10::nullopt;
}
IterDomain* reduction_on_xdim = nullptr;
for (auto id : tv_out->domain()->domain()) {
// Currently warp reduction only allows
// serial and block.x parallel reductions
if (id->isReduction() && id->isParallelized()) {
if (id->getParallelType() == ParallelType::TIDx) {
reduction_on_xdim = id;
} else if (id->isThread()) {
return c10::nullopt;
}
}
}
if (!reduction_on_xdim) {
return c10::nullopt;
}
if (!reduction_on_xdim->start()->isZeroInt()) {
return c10::nullopt;
}
if (reduction_on_xdim->hasPaddingToMultipleOfWarp()) {
return c10::optional<IterDomain*>(reduction_on_xdim);
}
if (reduction_on_xdim->extent()->isConstInt()) {
auto extent_value = reduction_on_xdim->extent()->evaluateInt();
if (extent_value % at::cuda::warp_size() == 0) {
return c10::optional<IterDomain*>(reduction_on_xdim);
}
}
return c10::nullopt;
}
bool derivedFromRootCAAxes(const TensorView* tv, IterDomain* axis) {
std::vector<IterDomain*> ca_axes(
tv->domain()->domain().begin(),
tv->domain()->domain().begin() + tv->getComputeAtPosition());
auto ca_root_vals = IterVisitor::getInputsTo(
std::vector<Val*>(ca_axes.begin(), ca_axes.end()));
auto root_vals = IterVisitor::getInputsTo({axis});
return std::any_of(
root_vals.begin(), root_vals.end(), [&ca_root_vals](auto root) {
return std::find(ca_root_vals.begin(), ca_root_vals.end(), root) !=
ca_root_vals.end();
});
}
std::unordered_map<ParallelType, IterDomain*, TypeHash> getParallelDomains(
const Val* val) {
const TensorView* tv = nullptr;
if (val->isA<TensorView>()) {
tv = val->as<TensorView>();
} else if (val->isA<kir::TensorIndex>()) {
tv = val->as<kir::TensorIndex>()->view();
} else {
TORCH_INTERNAL_ASSERT(
false, "Provided val is not TensorIndex or TensorView.");
}
std::unordered_map<ParallelType, IterDomain*, TypeHash> parallel_domains;
for (auto d : tv->domain()->domain()) {
if (d->isThread()) {
parallel_domains.insert(std::make_pair(d->getParallelType(), d));
}
}
return parallel_domains;
}
bool isCpAsyncInit(const Expr* expr) {
return isTensorScalarFillOp(expr) &&
// FIXME:
// We'd need to add a flag to all the init
// exprs so we could robustly detect initialization
// in all cases.
isCpAsyncOp(getTvOutput(expr)->definition());
}
c10::optional<Expr*> getMaybePredicatedSingleton(Expr* expr) {
if (auto ite = dynamic_cast<kir::IfThenElse*>(expr)) {
if (ite->elseBody().empty()) {
if (ite->thenBody().size() == 1) {
return ite->thenBody().exprs()[0];
}
}
}
return c10::nullopt;
}
//! Short-cut for checking if the expression loads from global memory.
bool isGlobalLoad(const Expr* expr) {
if (expr->isA<LoadStoreOp>() ||
(expr->isA<UnaryOp>() &&
expr->as<UnaryOp>()->getUnaryOpType() == UnaryOpType::Set)) {
if (auto in_tv = getTv(expr->input(0))) {
return in_tv->getMemoryType() == MemoryType::Global;
}
}
return false;
}
//! Short-cut for checking if the given expression initializes buffers
//! for global memory load.
bool isGlobalLoadInit(const Expr* expr) {
if (auto uop = dynamic_cast<const UnaryOp*>(expr)) {
if (uop->in()->isScalar()) {
// FIXME:
// We'd need to add a flag to all the init
// exprs so we could robustly detect initialization
// in all cases.
if (isGlobalLoad(getTvOutput(uop)->definition())) {
return true;
}
}
}
return false;
}
kir::Allocate* allocGlobalBufferForGridComm(
Val* buffer_size,
DataType dtype,
bool zero_init) {
const std::vector<IterDomain*> new_buffer_ids = {
IrBuilder::create<IterDomain>(IterDomainBuilder(
GpuLower::current()->kernel()->zeroVal(), buffer_size))};
const auto buffer_domain = IrBuilder::create<TensorDomain>(new_buffer_ids);
const auto buffer_tv =
IrBuilder::create<TensorView>(buffer_domain, dtype, MemoryType::Global);
return IrBuilder::create<kir::Allocate>(
buffer_tv, buffer_tv->getMemoryType(), nullptr, zero_init);
}
namespace {
class ExprFlattener : private kir::IrVisitor {
private:
using kir::IrVisitor::handle;
void handle(Expr* expr) final {
if (expr->isA<kir::ForLoop>() || expr->isA<kir::IfThenElse>()) {
kir::IrVisitor::handle(expr);
} else {
flat_exprs_.push_back(expr);
}
}
private:
std::vector<Expr*> flat_exprs_;
public:
//! Flattens scopes extracting out a single ordered list of exprs.
static std::vector<Expr*> flatten(const std::vector<Expr*>& loop_nests) {
ExprFlattener flattener;
for (auto expr : loop_nests) {
flattener.handle(expr);
}
return flattener.flat_exprs_;
}
};
} // namespace
std::vector<Expr*> flattenScopedExprs(const std::vector<Expr*>& loop_nests) {
return ExprFlattener::flatten(loop_nests);
}
IterDomain* caMapExactConcreteId(IterDomain* id) {
return GpuLower::current()->caMap()->getConcreteMappedID(
id, IdMappingMode::EXACT);
}
std::vector<Expr*> getAllSwizzlesBetween(
std::vector<IterDomain*> from,
std::vector<IterDomain*> to) {
auto all_expr = DependencyCheck::getAllExprsBetween(
{from.begin(), from.end()}, {to.begin(), to.end()});
std::vector<Expr*> all_swizzles;
std::copy_if(
all_expr.begin(),
all_expr.end(),
std::back_inserter(all_swizzles),
[](Expr* expr) {
return expr->getExprType().has_value() &&
(expr->etype() == ExprType::Swizzle2D);
});
return all_swizzles;
}
} // namespace ir_utils
namespace loop_utils {
BasicAllocInfo getAllocInformation(
const TensorView* tv,
const std::vector<kir::ForLoop*>& for_loops,
const std::unordered_map<IterDomain*, IterDomain*>& id_map,
bool use_id_map) {
BasicAllocInfo info;
auto gpu_lower = GpuLower::current();
bool outer_alloc_found = false;
for (auto fl : for_loops) {
if (info.alloc_pos == tv->getComputeAtPosition()) {
break;
}
if (tv->axis(info.alloc_pos)->isReduction()) {
const auto outputs = FusionGuard::getCurFusion()->getTerminatingOutputs();
TORCH_INTERNAL_ASSERT(
std::find(outputs.begin(), outputs.end(), tv) != outputs.end(),
"Invalid computeAt of T",
tv->name(),
". A reducation axis is detected outside computeAt point even though it is not an output tensor.");
break;
}
auto fl_id = fl->iter_domain();
if (fl_id->getParallelType() == ParallelType::Unroll) {
break;
}
// Shared memory must be allocated outside of unswitched
// domains. See issue #1133.
if (fl_id->getParallelType() == ParallelType::Unswitch &&
tv->getMemoryType() == MemoryType::Shared) {
outer_alloc_found = true;
}
// Assume global memory is allocated at outer most scope.
if (tv->getMemoryType() == MemoryType::Global) {
outer_alloc_found = true;
}
// Allocation of a double buffered tensor is placed outside its
// double buffer axis.
if ((tv->isDoubleBuffered() || tv->isCircularBuffered()) &&
tv->axis(info.alloc_pos) ==
gpu_lower->doubleBufferInfo().getDoubleBufferAxis(tv)) {
outer_alloc_found = true;
}
auto local_id = tv->axis(info.alloc_pos);
if (use_id_map) {
auto id_it = id_map.find(local_id);
if (id_it != id_map.end()) {
local_id = id_it->second;
}
}
if (GpuLower::current()->caMap()->areMapped(
local_id, fl_id, IdMappingMode::PERMISSIVE)) {
info.alloc_pos++;
}
info.init_for_loop = fl;
if (!outer_alloc_found) {
info.alloc_for_loop = fl;
}
}
return info;
}
} // namespace loop_utils
namespace {
class ReplaceExprInput : private kir::ExprMutator {
public:
static std::vector<Expr*> replace(
const std::vector<Expr*>& exprs,
const std::unordered_map<Val*, Val*>& replacement_map) {
ReplaceExprInput replacer(replacement_map);
replacer.traverseAndInsert(exprs);
return replacer.exprs_;
}
private:
ReplaceExprInput(const std::unordered_map<Val*, Val*>& replacement_map)
: replacement_map_(replacement_map) {}
using kir::ExprMutator::handle;
c10::optional<std::unordered_map<Val*, Val*>> getMaybeInputReplacementMap(
Expr* expr) {
bool need_replacement = false;
std::unordered_map<Val*, Val*> replaced_val;
for (auto in : expr->inputs()) {
auto replace_it = replacement_map_.find(in);
if (replace_it != replacement_map_.end()) {
need_replacement = true;
replaced_val[in] = replace_it->second;
} else {
replaced_val[in] = in;
}
}
if (need_replacement) {
return c10::optional<std::unordered_map<Val*, Val*>>(replaced_val);
} else {
return c10::nullopt;
}
}
// Copy predicates and register expression replacement
void registerReplaceWithPredicate(Expr* old_expr, Expr* new_expr) {
new_expr->setPredicate(old_expr->predicate());
new_expr->setWritePredicate(old_expr->writePredicate());
registerReplace(old_expr, new_expr);
}
void handle(UnaryOp* node) final {
auto replaced_inputs = getMaybeInputReplacementMap(node);
if (replaced_inputs.has_value()) {
auto replacement = IrBuilder::create<UnaryOp>(
node->getUnaryOpType(), node->out(), replaced_inputs->at(node->in()));
registerReplaceWithPredicate(node, replacement);
}
}
void handle(BinaryOp* node) final {
auto replaced_inputs = getMaybeInputReplacementMap(node);
if (replaced_inputs.has_value()) {
auto replacement = IrBuilder::create<BinaryOp>(
node->getBinaryOpType(),
node->out(),
replaced_inputs->at(node->lhs()),
replaced_inputs->at(node->rhs()));
registerReplaceWithPredicate(node, replacement);
}
}
void handle(TernaryOp* node) final {
auto replaced_inputs = getMaybeInputReplacementMap(node);
if (replaced_inputs.has_value()) {
auto replacement = IrBuilder::create<TernaryOp>(
node->getTernaryOpType(),
node->out(),
replaced_inputs->at(node->in1()),
replaced_inputs->at(node->in2()),
replaced_inputs->at(node->in3()));
registerReplaceWithPredicate(node, replacement);
}
}
void handle(RNGOp* node) final {
// RNGOp has no input
return;
}
void handle(ReductionOp* node) final {
auto replaced_inputs = getMaybeInputReplacementMap(node);
if (replaced_inputs.has_value()) {
auto replacement = IrBuilder::create<ReductionOp>(
node->getReductionOpType(),
node->init(),
node->out(),
replaced_inputs->at(node->in()),
node->isAllreduce());
registerReplaceWithPredicate(node, replacement);
}
}
void handle(GroupedReductionOp* node) final {
auto replaced_inputs = getMaybeInputReplacementMap(node);
if (replaced_inputs.has_value()) {
const auto& map = replaced_inputs.value();
auto inputs = node->inputs();
for (auto& input : inputs) {
auto it = map.find(input);
if (it != map.end()) {
input = it->second;
}
}
auto replacement = IrBuilder::create<GroupedReductionOp>(
node->getReductionOpTypes(),
node->initVals(),
node->outputs(),
inputs,
node->isAllreduce());
registerReplaceWithPredicate(node, replacement);
}
}
void handle(BroadcastOp* node) final {
auto replaced_inputs = getMaybeInputReplacementMap(node);
if (replaced_inputs.has_value()) {
auto replacement = IrBuilder::create<BroadcastOp>(
node->out(),
replaced_inputs->at(node->in()),
node->getBroadcastDimFlags());
registerReplaceWithPredicate(node, replacement);
}
}
void handle(WelfordOp* node) final {
auto replaced_inputs = getMaybeInputReplacementMap(node);
if (replaced_inputs.has_value()) {
auto replacement = IrBuilder::create<WelfordOp>(
node->outAvg(),
node->outVar(),
node->outN(),
node->initAvg(),
node->initVar(),
node->initN(),
replaced_inputs->at(node->inAvg()),
replaced_inputs->at(node->inVar()),
replaced_inputs->at(node->inN()));
registerReplaceWithPredicate(node, replacement);
}
}
void handle(MmaOp* node) final {
auto replaced_inputs = getMaybeInputReplacementMap(node);
if (replaced_inputs.has_value()) {
auto replacement = IrBuilder::create<MmaOp>(
node->out(),
replaced_inputs->at(node->inA()),
replaced_inputs->at(node->inB()),
node->init(),
node->options());
registerReplaceWithPredicate(node, replacement);
}
}
void handle(LoadStoreOp* node) final {
auto replaced_inputs = getMaybeInputReplacementMap(node);
if (replaced_inputs.has_value()) {
auto replacement = IrBuilder::create<LoadStoreOp>(
node->opType(), node->out(), node->in());
registerReplaceWithPredicate(node, replacement);
}
}
private:
const std::unordered_map<Val*, Val*>& replacement_map_;
};
} // namespace
std::vector<Expr*> replaceInputsInExpr(
const std::vector<Expr*>& exprs,
const std::unordered_map<Val*, Val*>& replacement_map) {
return ReplaceExprInput::replace(exprs, replacement_map);
}
bool isTrivialIterDomain(IterDomain* id) {
auto pt = id->getParallelType();
return id->isReduction() || id->isBroadcast() || id->isStride() ||
(id->extent()->isOneInt() && id->start()->isZeroInt()) ||
pt == ParallelType::Vectorize ||
(isParallelTypeThread(pt) &&
!GpuLower::current()->haloInfo().hasHaloWidth(id));
}
} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch
|