1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
|
#include <torch/csrc/jit/codegen/cuda/lower_validation.h>
#include <torch/csrc/jit/codegen/cuda/contiguity.h>
#include <torch/csrc/jit/codegen/cuda/expr_evaluator.h>
#include <torch/csrc/jit/codegen/cuda/instrumentation.h>
#include <torch/csrc/jit/codegen/cuda/ir_iostream.h>
#include <torch/csrc/jit/codegen/cuda/ir_utils.h>
#include <torch/csrc/jit/codegen/cuda/iter_visitor.h>
#include <torch/csrc/jit/codegen/cuda/lower2device.h>
#include <torch/csrc/jit/codegen/cuda/lower_utils.h>
#include <torch/csrc/jit/codegen/cuda/transform_iter.h>
#include <torch/csrc/jit/codegen/cuda/transform_replay.h>
#include <torch/csrc/jit/codegen/cuda/type.h>
#include <ATen/cuda/CUDAContext.h>
#include <limits>
namespace torch {
namespace jit {
namespace fuser {
namespace cuda {
namespace {
//! Validate multiple output tensors of the same expression, i.e.,
//! siblings, have valid domains and parallel types. Since siblings
//! are placed in the same loop nest, they must be parallelized the
//! same way. Will infer and modify serial parallel types if other
//! output/s are parallelized, so that user wouldn't have to specify
//! the same parallelization 3 times. Will throw if conflicts are
//! detected, i.e. TIDx vs BIDx etc.
class ValidateSiblings : public IterVisitor {
public:
static void validate(Fusion* fusion) {
ValidateSiblings validator;
validator.traverse(fusion);
}
private:
using IterVisitor::handle;
void handle(Expr* expr) final {
if (!ir_utils::isTvOp(expr) || expr->outputs().size() < 2) {
IterVisitor::handle(expr);
return;
}
auto ref_output = expr->outputs().at(0)->as<TensorView>();
auto ref_ndims = ref_output->nDims();
const auto& ref_root = ref_output->getRootDomain();
std::unordered_map<IterDomain*, IterDomain*> id_map;
for (const auto sibling :
ir_utils::filterByType<TensorView>(expr->outputs())) {
if (ref_output == sibling) {
continue;
}
TORCH_INTERNAL_ASSERT(
sibling->nDims() == ref_ndims,
"Mismatched dimensionality detected. Expr: ",
expr->toString(),
"Ref output: ",
ref_output->toString(),
". Sibling: ",
sibling->toString());
for (const auto i : c10::irange(ref_ndims)) {
validateParallelTypes(ref_output->axis(i), sibling->axis(i));
}
for (const auto i : c10::irange(ref_root.size())) {
id_map[ref_root[i]] = sibling->getRootDomain().at(i);
}
BestEffortReplay replay(
sibling->domain()->domain(), ref_output->domain()->domain(), id_map);
for (const auto i : c10::irange(ref_ndims)) {
auto it = replay.getReplay().find(ref_output->axis(i));
TORCH_INTERNAL_ASSERT(
it != replay.getReplay().end(),
"Matching sibling ID not found. Expr: ",
expr->toString(),
"Ref ID: ",
ref_output->axis(i)->toString());
auto sibling_id = it->second;
TORCH_INTERNAL_ASSERT(
sibling->axis(i) == sibling_id,
"Invalid matching sinbling ID detected. Expr: ",
expr->toString(),
"Sibling ID: ",
sibling_id->toString());
}
}
}
// Parallelize id1 and id0 consistently if one is serial and the other isn't
void validateParallelTypes(IterDomain* id0, IterDomain* id1) {
const auto ptype0 = id0->getParallelType();
const auto ptype1 = id1->getParallelType();
if (ptype0 == ParallelType::Vectorize ||
ptype1 == ParallelType::Vectorize) {
auto other_type = ptype0 == ParallelType::Vectorize ? ptype1 : ptype0;
TORCH_INTERNAL_ASSERT(
other_type == ParallelType::Vectorize ||
(!isParallelTypeThreadDim(other_type) &&
!isParallelTypeBlockDim(other_type)),
"Vectorize type was parallelized inconsistently in. ",
"Detected during promoting parallel types.");
return;
}
if (ptype0 != ptype1) {
TORCH_CHECK(
ptype0 == ParallelType::Serial || ptype1 == ParallelType::Serial,
"Error promoting parallel types");
if (ptype0 == ParallelType::Serial) {
id0->parallelize(ptype1);
}
if (ptype1 == ParallelType::Serial) {
id1->parallelize(ptype0);
}
}
}
};
// Make sure all IterDomains are only used for a unique
// TensorView. Several mappings from IterDomains are
// created during lowering, which relies on the unique usage of
// IterDomains.
void validateIterDomainUsage(Fusion* fusion) {
FUSER_PERF_SCOPE("GpuLower::Lower::validateIterDomainUse");
FusionGuard fg(fusion);
auto used_vals = fusion->usedMathVals();
std::unordered_map<IterDomain*, TensorView*> domain_use_map;
for (auto tv : ir_utils::filterByType<TensorView>(used_vals)) {
std::unordered_set<Val*> root_domains;
std::copy(
tv->getRootDomain().begin(),
tv->getRootDomain().end(),
std::inserter(root_domains, root_domains.begin()));
std::vector<Val*> leaf_domains;
std::copy(
tv->domain()->domain().begin(),
tv->domain()->domain().end(),
std::back_inserter(leaf_domains));
auto all_domain_vals =
DependencyCheck::getAllValsBetween(root_domains, leaf_domains);
for (auto id : ir_utils::filterByType<IterDomain>(all_domain_vals)) {
auto it = domain_use_map.find(id);
TORCH_INTERNAL_ASSERT(
it == domain_use_map.end(),
"Multiple use of ",
id,
" detected.",
" Used in both TV",
tv->name(),
" and TV",
it->second->name());
domain_use_map.insert({id, tv});
}
}
}
} // namespace
void validateIr(Fusion* fusion) {
FUSER_PERF_SCOPE("GpuLower::Lower::validateIr");
FusionGuard fg(fusion);
fusion->validateInputs();
// Validate Parallelization
ValidateSiblings::validate(fusion);
validateIterDomainUsage(fusion);
}
namespace {
// Check contiguity for all root domains associated with Misaligned Vectorize
// ParallelType
void checkContiguity(
const std::unordered_set<IterDomain*>& domains,
TensorView* tv) {
TORCH_INTERNAL_ASSERT(tv->getMemoryType() == MemoryType::Global);
for (const auto idx : c10::irange(tv->getRootDomain().size())) {
auto root = tv->getRootDomain()[idx];
if (domains.find(root) != domains.end()) {
TORCH_INTERNAL_ASSERT(
!root->isBroadcast(),
"Misaligned vectorization prohibits merging broadcast domains.",
"Issue found in, ",
tv);
TORCH_INTERNAL_ASSERT(
tv->domain()->contiguity()[idx],
"Cannot merge non-contiguous root domains with misaligned vectorization.",
"Issue found in, ",
tv);
}
}
}
// Check all root iter domains in consumer that are present in domain, making
// sure they're contiguous. Map these domains to producer and make sure they are
// also contiguous in producer. Producer-consumer relationship is assumed to be
// through a set operation.
void checkContiguity(
const std::unordered_set<IterDomain*>& domains,
TensorView* consumer,
TensorView* producer) {
// This seems not quite right, shouldn't we be able to reverse this?
TORCH_INTERNAL_ASSERT(consumer->getMemoryType() == MemoryType::Local);
TORCH_INTERNAL_ASSERT(producer->getMemoryType() == MemoryType::Global);
auto root_c2p =
PairwiseRootDomainMap(producer, consumer)
.mapConsumerToProducer(consumer->domain(), producer->domain());
std::unordered_map<IterDomain*, bool> producer_domain_contiguity;
for (const auto idx : c10::irange(producer->getMaybeRFactorDomain().size())) {
auto root = producer->getMaybeRFactorDomain()[idx];
auto contiguity = producer->domain()->contiguity()[idx];
producer_domain_contiguity.insert({root, contiguity});
}
for (auto consumer_root : consumer->getMaybeRFactorDomain()) {
if (domains.find(consumer_root) != domains.end()) {
auto producer_root = root_c2p[consumer_root];
TORCH_INTERNAL_ASSERT(
producer_domain_contiguity.find(producer_root) !=
producer_domain_contiguity.end());
TORCH_INTERNAL_ASSERT(
!consumer_root->isBroadcast() || !producer_root->isBroadcast(),
"Misaligned vectorization prohibits merging broadcast domains.",
"Issue found in, ",
consumer);
TORCH_INTERNAL_ASSERT(root_c2p.find(consumer_root) != root_c2p.end());
TORCH_INTERNAL_ASSERT(
producer_domain_contiguity[producer_root],
"Cannot merge non-contiguous root domains with misaligned vectorization.",
"Issue found in, ",
consumer);
}
}
}
class VectorizeValidator : public OptInDispatch {
private:
// Initially, vectorized_id is the IterDomain with Vectorize ParallelType
// After processing all merge and split operations,
// vectorized_id is the corresponding root domain
VectorizeValidator(IterDomain* vectorized_id)
: vectorized_id_(vectorized_id) {}
using OptInDispatch::handle;
void handle(Split* s) final {
if (s->outer() == vectorized_id_) {
is_valid = false;
} else if (s->inner() == vectorized_id_) {
vectorized_id_ = s->in();
}
domains_.insert(s->outer());
domains_.insert(s->inner());
}
void handle(Merge* m) final {
if (m->out() == vectorized_id_) {
if (m->inner()->isBroadcast() && !m->outer()->isBroadcast()) {
vectorized_id_ = m->outer();
} else {
vectorized_id_ = m->inner();
}
}
domains_.insert(m->outer());
domains_.insert(m->inner());
}
// For the producer tensor, it's indexed first by transformed like
// the consumer. So, to find its contig merged domain, use the
// consumer TensorDomain with the producer contiguity info.
static std::vector<bool> mapProducerContiguity(
TensorView* producer_tv,
TensorView* consumer_tv) {
const auto c2p = PairwiseRootDomainMap(producer_tv, consumer_tv)
.mapConsumerToProducer(
consumer_tv->domain(), producer_tv->domain());
std::vector<bool> producer_contiguity;
for (auto consumer_root_id : consumer_tv->getRootDomain()) {
auto producer_root_id = c2p.at(consumer_root_id);
auto producer_root_it = std::find(
producer_tv->getMaybeRFactorDomain().begin(),
producer_tv->getMaybeRFactorDomain().end(),
producer_root_id);
TORCH_INTERNAL_ASSERT(
producer_root_it != producer_tv->getMaybeRFactorDomain().end());
auto producer_root_id_offset = std::distance(
producer_tv->getMaybeRFactorDomain().begin(), producer_root_it);
producer_contiguity.push_back(
producer_tv->domain()->contiguity().at(producer_root_id_offset));
}
return producer_contiguity;
}
private:
std::unordered_set<IterDomain*> domains_;
IterDomain* vectorized_id_ = nullptr;
bool is_valid = true;
public:
static void validate(TensorView* tv) {
// Make sure there's only one vectorized ID
IterDomain* v_id = nullptr;
bool misaligned_vectorize = false;
for (auto id : tv->domain()->domain()) {
if (id->getParallelType() == ParallelType::Vectorize ||
id->getParallelType() == ParallelType::MisalignedVectorize) {
TORCH_INTERNAL_ASSERT(
v_id == nullptr,
"Found two vectorized domains in ",
tv,
" only one is allowed.");
v_id = id;
misaligned_vectorize =
id->getParallelType() == ParallelType::MisalignedVectorize;
}
}
// If no vectorized ids found simply return. If vectorized access is
// broadcast, it won't generate an actual vector instruction, so can safely
// be ignore
if (v_id == nullptr || v_id->isBroadcast()) {
return;
}
auto fusion = FusionGuard::getCurFusion();
TORCH_CHECK(
v_id->extent()->isConstScalar(),
"Vectorizing a domain requires a constant size.");
ExpressionEvaluator const_expr_eval(fusion);
auto vector_size_optional = const_expr_eval.evaluate(v_id->extent());
TORCH_CHECK(
vector_size_optional.has_value(),
"Could not evaluate constant value bound to vectorized dim.");
auto vector_size = ((int64_t)dataTypeSize(tv->getDataType().value())) *
vector_size_optional.value();
// Allow half2, float2, float4 and same sized vtypes.
std::array<int64_t, 4> allowed_vector_sizes = {2, 4, 8, 16}; // NOLINT
TORCH_CHECK(
std::find(
allowed_vector_sizes.begin(),
allowed_vector_sizes.end(),
vector_size) != allowed_vector_sizes.end(),
"Tried to vectorize a dim resulting in a word size of ",
vector_size,
" however, vector sizes only upto and including 16 bytes are supported.");
auto replay_exprs = DependencyCheck::getAllExprsBetween(
{tv->getMaybeRFactorDomain().begin(),
tv->getMaybeRFactorDomain().end()},
{v_id});
VectorizeValidator validator(v_id);
for (auto expr_it = replay_exprs.rbegin(); expr_it != replay_exprs.rend();
++expr_it) {
auto expr = *expr_it;
validator.handle(expr);
}
TORCH_CHECK(
validator.is_valid,
"Invalid vectorized pattern found, vectorization iter domains must be descendants of inner-most dimension.",
"Issue found in, ",
tv,
"\n");
if (misaligned_vectorize) {
if (tv->getMemoryType() == MemoryType::Global) {
checkContiguity(validator.domains_, tv);
} else if (
tv->definition()->getExprType() == ExprType::UnaryOp &&
tv->definition()->as<UnaryOp>()->getUnaryOpType() ==
UnaryOpType::Set) {
auto input = tv->definition()->input(0);
TORCH_INTERNAL_ASSERT(input->isA<TensorView>());
auto input_tv = input->as<TensorView>();
checkContiguity(validator.domains_, tv, input_tv);
}
}
TORCH_INTERNAL_ASSERT(validator.vectorized_id_ != nullptr);
// Contiguity is based on rfactor domain.
IterDomain* last_root_dim = nullptr;
int last_root_dim_pos = -1;
for (size_t i = tv->getMaybeRFactorDomain().size(); i > 0; i--) {
auto r_id = tv->getMaybeRFactorDomain()[i - 1];
if (r_id->isReduction() || r_id->isBroadcast()) {
continue;
}
last_root_dim = r_id;
last_root_dim_pos = (int)i - 1;
break;
}
if (last_root_dim == nullptr) {
// Should never get here, but that would mean there are no concrete dims,
// so we should be fine.
return;
}
TORCH_CHECK(
last_root_dim == validator.vectorized_id_ &&
tv->domain()->contiguity()[last_root_dim_pos],
"Vectorized dim has to be from a contiguous inner most position: ",
tv,
"\n");
// Save info required to lowering and runtime validation
auto consumer_word_size_it =
GpuLower::current()->vectorizedAccesses().find(tv);
if (consumer_word_size_it !=
GpuLower::current()->vectorizedAccesses().end()) {
consumer_word_size_it->second = std::max(
(int)vector_size_optional.value(), consumer_word_size_it->second);
} else {
GpuLower::current()->vectorizedAccesses().emplace(
tv, (int)vector_size_optional.value());
}
auto producer_tv = tv->definition()->inputs().at(0)->as<TensorView>();
auto producer_word_size_it =
GpuLower::current()->vectorizedAccesses().find(producer_tv);
if (producer_word_size_it !=
GpuLower::current()->vectorizedAccesses().end()) {
producer_word_size_it->second = std::max(
(int)vector_size_optional.value(), producer_word_size_it->second);
} else {
GpuLower::current()->vectorizedAccesses().emplace(
producer_tv, (int)vector_size_optional.value());
}
VectorizedSetInfo vectorized_set_info;
vectorized_set_info.consumer_tv = tv;
vectorized_set_info.producer_tv = producer_tv;
// Note that VectorizedSetInfo is about each instance of
// vectorized set operations, so the word size is the size of this
// specific vectorized set.
vectorized_set_info.word_size = (int)vector_size_optional.value();
vectorized_set_info.vectorized_leaf_id = v_id;
vectorized_set_info.vectorized_root_id = validator.vectorized_id_;
// For aligned vectorize, the extent of a vectorized domain must
// be divisible by the vector word size. The domain is usually
// just one of the root domains, but can be a merged domain of
// contiguous domains. Those domains are saved in
// VectorizedSetInfo.contig_root_ids at the time of indexing.
GpuLower::current()->vectorizedSetInfo().emplace_back(vectorized_set_info);
}
};
} // namespace
// Uses ContigIDs to find root contig domains that a vectorized domain
// depends on. As ContigIDs depends on HaloInfo, this must be done
// after HaloInfo is created.
void validateAndCollectVectorizeInfo(Fusion* fusion) {
FUSER_PERF_SCOPE("GpuLower::Lower::validateVectorize");
FusionGuard fg(fusion);
auto used_vals = fusion->usedMathVals();
std::unordered_set<TensorView*> used_tvs;
for (auto val : used_vals) {
if (ir_utils::isTV(val)) {
used_tvs.emplace(val->as<TensorView>());
}
}
for (auto tv : used_tvs) {
bool has_vectorize_dim = false;
bool has_misaligned_vectorize_dim = false;
for (const auto i : c10::irange(tv->nDims())) {
IterDomain* id = tv->axis(i);
IterDomain* concrete_id =
GpuLower::current()->caMap()->getConcreteMappedID(
id, IdMappingMode::LOOP);
auto ptype = concrete_id->getParallelType();
if (ptype == ParallelType::Vectorize) {
// If we want to do this check up front we would have to do 2 things:
// (1) Check that the tensor view with vectorize being set on it is
// getting set outside the local compute at position
// (2) Check any producers of the tensor view with vectorize being set
// on it to make sure their compute at position isn't to the right of
// the vectorize dim.
TORCH_INTERNAL_ASSERT(
i >= tv->getComputeAtPosition(),
"IterDomains to the left of the compute at point cannot be vectorized: ",
tv,
"\n");
has_vectorize_dim = true;
}
if (concrete_id->getParallelType() == ParallelType::MisalignedVectorize) {
TORCH_INTERNAL_ASSERT(
!tv->hasComputeAt() ||
tv->getComputeAtPosition() == tv->nDims() - 1,
"Only allow misaligned vectorization in the -2 computeAt position.");
TORCH_INTERNAL_ASSERT(
tv->getMemoryType() == MemoryType::Local ||
tv->getMemoryType() == MemoryType::Global,
"Only allow misaligned vectorization between global and local memory.");
has_misaligned_vectorize_dim = true;
}
}
if (has_vectorize_dim) {
TORCH_INTERNAL_ASSERT(
tv->definition() == nullptr ||
(tv->definition()->isA<UnaryOp>() &&
tv->definition()->as<UnaryOp>()->getUnaryOpType() ==
UnaryOpType::Set) ||
tv->definition()->isA<LoadStoreOp>(),
"Vectorized accesses cannot be inline with computation, they are only supported with a Set operation.",
"TensorView: ",
tv);
}
// Validate the vectorized domain maps to the innermost domain of
// tv. Note that we don't need to validate its producer tv as
// both Vectorize and MisalignedVectorize can only be used with
// UnaryOp::Set.
if (has_vectorize_dim || has_misaligned_vectorize_dim) {
VectorizeValidator::validate(tv);
}
}
}
namespace {
void fillVectorizedContigRootDomains(
const TensorView* tv,
const ContigIDs& contig_finder,
IterDomain* vectorized_root_id,
VectorizedSetInfo& info) {
const auto& root_dom = tv->getMaybeRFactorDomain();
// Find the root domains that are dependency of the merged contig
// domain.
auto consumer_indexed_it =
contig_finder.rootToIndexedID().find(vectorized_root_id);
TORCH_INTERNAL_ASSERT(
consumer_indexed_it != contig_finder.rootToIndexedID().end(),
"Contiguity information not found for root domain: ",
vectorized_root_id->toString());
auto consumer_indexed_id = consumer_indexed_it->second;
// Actual indexed root domains for this root domain. If
// contig merge is done, multiple root domains are included.
std::unordered_set<IterDomain*> indexed_root_ids;
if (consumer_indexed_id == vectorized_root_id) {
// Indexed domain is equal to the root domain, meaning no contig
// merge is involved.
indexed_root_ids.insert(vectorized_root_id);
} else {
auto consumer_within_contig_it =
contig_finder.withinContigIDs().find(consumer_indexed_id);
TORCH_INTERNAL_ASSERT(
consumer_within_contig_it != contig_finder.withinContigIDs().end());
const auto& within_ids = consumer_within_contig_it->second;
std::copy_if(
root_dom.begin(),
root_dom.end(),
std::inserter(indexed_root_ids, indexed_root_ids.end()),
[&](IterDomain* root_id) {
return within_ids.find(root_id) != within_ids.end();
});
}
// Store the contig merged root domains. If it is already set, pick
// the smaller one as it is used for validating divisibility of the
// merged extent.
if (info.contig_root_ids.empty() ||
indexed_root_ids.size() < info.contig_root_ids.size()) {
info.contig_root_ids = indexed_root_ids;
}
}
} // namespace
void fillConsumerVectorizedContigRootDomains(
const TensorView* consumer_tv,
const ContigIDs& contig_finder) {
auto& info_vector = GpuLower::current()->vectorizedSetInfo();
auto it = std::find_if(
info_vector.begin(), info_vector.end(), [&consumer_tv](auto& info) {
return info.consumer_tv == consumer_tv;
});
if (it == info_vector.end()) {
return;
}
VectorizedSetInfo& info = *it;
// info.vectorized_root_id is validated at this point to be the
// last concrete root domain in consumer.
auto consumer_root_id = info.vectorized_root_id;
fillVectorizedContigRootDomains(
consumer_tv, contig_finder, consumer_root_id, info);
}
void fillProducerVectorizedContigRootDomains(
const TensorView* producer_tv,
const TensorView* consumer_tv,
const std::unordered_map<IterDomain*, IterDomain*>& c2p_map,
const ContigIDs& contig_finder) {
auto& info_vector = GpuLower::current()->vectorizedSetInfo();
auto it = std::find_if(
info_vector.begin(),
info_vector.end(),
[&producer_tv, &consumer_tv](auto& info) {
return info.consumer_tv == consumer_tv &&
info.producer_tv == producer_tv;
});
if (it == info_vector.end()) {
return;
}
VectorizedSetInfo& info = *it;
// info.vectorized_root_id is validated at this point to be the
// last concrete root domain in consumer.
auto consumer_root_id = info.vectorized_root_id;
auto root_id = c2p_map.at(consumer_root_id);
fillVectorizedContigRootDomains(producer_tv, contig_finder, root_id, info);
}
namespace {
// Backward propagation of partial ranges from outputs to
// inputs. Necessary to determine required ranges to compute.
//
// Example:
// tv0: [0:N]
// tv1: shift(tv0, {1}) -> [1:N]
// tv2: shift(tv0, {-1}) -> [0:N-1]
// tv3: tv1 + tv2 -> [1:N-1]
//
// In this case, the valid range of tv3 starts at 1 and ends at
// N-1. This means that not all of the values of tv1 and tv2 are
// actually necessary. Specifically, tv1[0] and tv2[N-1] aren't used
// for tv3. This function calculates the required minimum range of
// each tensor that needs to be computed.
std::unordered_map<IterDomain*, std::pair<int64_t, int64_t>> getLiveRangeOffsets(
Fusion* fusion) {
auto exprs = StmtSort::getExprs(fusion);
std::unordered_map<IterDomain*, std::pair<int64_t, int64_t>> map;
ExpressionEvaluator ee(fusion);
for (auto it = exprs.rbegin(); it != exprs.rend(); ++it) {
auto expr = *it;
for (auto consumer : ir_utils::filterByType<TensorView>(expr->outputs())) {
for (auto consumer_root : consumer->getRootDomain()) {
auto consumer_start_offset = ee.evaluate(consumer_root->start());
auto consumer_stop_offset = ee.evaluate(consumer_root->stopOffset());
TORCH_INTERNAL_ASSERT(
consumer_start_offset.has_value(),
"Can't evaluate start value of ",
consumer_root->start());
TORCH_INTERNAL_ASSERT(
consumer_stop_offset.has_value(),
"Can't evaluate stop value of ",
consumer_root->stopOffset());
auto it = map.find(consumer_root);
if (it == map.end() || consumer->isFusionOutput()) {
// No range set for this root domain, which means this
// consumer_tensor is an output tensor or the consumer_root
// domain is a reduction domain. In either case, the
// required range is simply defined by the start and stop
// offsets of the root domain.
// Also, when consumer is an output, even if it's not
// terminating, the range to compute must not be affected by
// how it's used by its consumers because an output tensor
// is visible to outside of the fusion.
map.insert(
{consumer_root,
{consumer_start_offset->as<int64_t>(),
consumer_stop_offset->as<int64_t>()}});
} else {
// When the range of this root domain is already set, it
// must be set by its consumers. Make sure the required
// range by the consumers is covered by the defined range of
// this root domain.
auto& consumer_range = it->second;
TORCH_INTERNAL_ASSERT(
consumer_start_offset->as<int64_t>() <= consumer_range.first);
TORCH_INTERNAL_ASSERT(
consumer_stop_offset->as<int64_t>() <= consumer_range.second);
}
}
// Propagate the range information from consumers to the
// produces. Note that the effect on the range by shift and
// gather is not considered here but taken care by halo regions.
for (auto producer : ir_utils::filterByType<TensorView>(expr->inputs())) {
auto c2p =
PairwiseRootDomainMap(producer, consumer)
.mapConsumerToProducer(consumer->domain(), producer->domain());
for (auto consumer_root : consumer->getRootDomain()) {
auto producer_it = c2p.find(consumer_root);
if (producer_it == c2p.end()) {
continue;
}
auto producer_root = producer_it->second;
auto& consumer_range = map.at(consumer_root);
const std::pair<int64_t, int64_t> init_range{
std::numeric_limits<int64_t>::max(),
std::numeric_limits<int64_t>::max()};
auto& producer_range =
map.insert({producer_root, init_range}).first->second;
producer_range.first =
std::min(producer_range.first, consumer_range.first);
producer_range.second =
std::min(producer_range.second, consumer_range.second);
}
}
}
}
return map;
}
// Make sure that a partial split with split_offset does not violate
// the required range defined by domain_offset. Suppose checking the
// start side of a root domain. Only positions at split_offset or
// larger are going to be computed, and all positions starting at
// domain_offset must be computed, thus split_offset must be smaller
// or equal to domain_offset. The same condition must hold for the end
// side of the domain.
//
// In order to validate this condition, the split offset is assumed to
// be a statically known constant value. This is not a hard
// requirement, but otherwise a runtime check would be needed.
void validateSplit(
Val* split_offset,
int64_t domain_offset,
const std::string& err_msg_prefix) {
ExpressionEvaluator ee(split_offset->fusion());
TORCH_INTERNAL_ASSERT(split_offset->isA<Int>());
auto split_offset_value = ee.evaluate(split_offset);
TORCH_INTERNAL_ASSERT(
split_offset_value.has_value(),
err_msg_prefix,
": Unknown offset of split: ",
split_offset);
TORCH_INTERNAL_ASSERT(
split_offset_value.value() <= domain_offset,
err_msg_prefix,
": Split offset is larger than the domain offset.",
" Split offset: ",
split_offset_value.value(),
". Domain offset: ",
domain_offset);
}
} // namespace
void validatePartialSplit(Fusion* fusion) {
FUSER_PERF_SCOPE("GpuLower::Lower::validatePartialSplit");
FusionGuard fg(fusion);
// If a root domain is partially split, only the sub range defined
// by the start and stop offsets of the partial split is
// computed. That sub range must cover the required range of the
// domain. So, the first thing to do is to determine the required
// minimum range of each root domain. Then, check if any partial
// split could result in a smaller range than the required range.
// Compute the required range of each root domain
auto range_info = getLiveRangeOffsets(fusion);
for (auto tv : ir_utils::allTvs(fusion)) {
auto exprs = StmtSort::getExprs(
tv->fusion(),
{tv->domain()->domain().begin(), tv->domain()->domain().end()});
for (auto split : ir_utils::filterByType<Split>(exprs)) {
// When the start and stop offsets are not zero, make sure the
// range defined by the split includes the required range to
// compute. If both of the split offsets are zero, this
// condition is obviously true. Also, this validation only needs
// to be done with root domains. Since the start and stop
// offsets of non-root domains must be just zero, they are
// skipped at this point.
if (split->startOffset()->isZeroInt() &&
split->stopOffset()->isZeroInt()) {
continue;
}
auto root_domain = split->in();
std::stringstream err_msg_prefix;
err_msg_prefix << "Error with " << root_domain << " in T" << tv->name();
TORCH_INTERNAL_ASSERT(range_info.find(root_domain) != range_info.end());
const auto& valid_range = range_info.at(root_domain);
// Check the start offset. If it's zero, no validation regarding
// the required range can occur.
if (!split->startOffset()->isZeroInt()) {
validateSplit(
split->startOffset(), valid_range.first, err_msg_prefix.str());
}
// Same for the stop offset.
if (!split->stopOffset()->isZeroInt()) {
validateSplit(
split->stopOffset(), valid_range.second, err_msg_prefix.str());
}
}
}
}
namespace {
//! Utility to make sure targeted gpu capability is
//! higher than provided major.minor.
void validateMinimumArch(int major, int minor) {
// Skip checking arch if disabled.
if (isOptionDisabled(DisableOption::ArchCheck)) {
return;
}
auto prop = at::cuda::getCurrentDeviceProperties();
TORCH_INTERNAL_ASSERT(prop->major >= major);
if (prop->major == major) {
TORCH_INTERNAL_ASSERT(prop->minor >= minor);
}
}
//! Validates that the operand and result tensors
//! of mma ops are swizzled and also validates
//! specialization of tidx as lane id.
void validateMmaTensors(MmaOp* mma) {
bool tidx_validated = false;
std::vector<TensorView*> to_validate = {
mma->inA()->as<TensorView>(),
mma->inB()->as<TensorView>(),
mma->out()->as<TensorView>()};
for (auto tv : to_validate) {
for (auto id : tv->domain()->domain()) {
auto ptype = id->getParallelType();
if (ptype == ParallelType::TIDx) {
TORCH_INTERNAL_ASSERT(
id->isMmaSwizzled(),
"TIDx for mma input/output must be set by WarpMmaSwizzler",
id,
tv);
if (!tidx_validated) {
// Check that TIDx is exact lane_id
const auto& paralel_dim_map =
GpuLower::current()->parallelDimensionMap();
TORCH_INTERNAL_ASSERT(
paralel_dim_map.isExact(ptype) &&
paralel_dim_map.get(ptype)->isConstInt() &&
paralel_dim_map.get(ptype)->evaluateInt() ==
at::cuda::warp_size(),
"TIDx is reserved for lane id in mma kernels, and it needs to be exactly a warp");
tidx_validated = true;
}
}
}
}
// Note: this check will be relaxed in a follow up.
auto validate_operand = [](const TensorView* tv) {
TORCH_INTERNAL_ASSERT(
tv->getMemoryType() == MemoryType::Local,
"Only supporting register input for mma ops, up to sm80 all mma ops have to take register inputs.");
TORCH_INTERNAL_ASSERT(
std::all_of(
tv->domain()->domain().begin() + tv->getComputeAtPosition(),
tv->domain()->domain().end(),
[](IterDomain* id) {
return id->isMmaSwizzled() ||
// MMA instructions can only take inputs from registers,
// so we always assume mma op inputs are located on
// registers.
// Currently requiring that serial ids on the right of the
// CA axis are constant sized to ensure early detection of
// invalid mma schedules.
((id->isBroadcast() || id->extent()->isConstInt()) &&
id->getParallelType() == ParallelType::Serial);
}),
"All id's on the right of CA pos needs to be mma-swizzled by WarpMmaSwizzler\n",
tv);
};
validate_operand(mma->inA()->as<TensorView>());
validate_operand(mma->inB()->as<TensorView>());
// Additionally validate that mma is not directly taking a double buffered
// register input as the double buffer indexing is currently not compatible
// with fragment iteration. Would need to require a cache stage in this case.
TORCH_INTERNAL_ASSERT(
!mma->inA()->as<TensorView>()->isDoubleBuffered(),
"MMA op cannot directly take double buffered register input, put a set stage before.");
TORCH_INTERNAL_ASSERT(
!mma->inB()->as<TensorView>()->isDoubleBuffered(),
"MMA op cannot directly take double buffered register input, put a set stage before.");
}
//! Note and TODO:
//! Currently relying on ldmatrix to
//! obtain the correct data layout for turing/ampere
//! mma's.
//! This restriction will eventually not
//! be necessary once the scatter swizzle is ready.
void validateTuringMmaInput(TensorView* tv) {
// Pattern matching here to make sure LDMatrix is the right format.
// Format is done through swizzling in the scheduling and
// we check that swizzling to make sure it's correctly setup for LDMatrix.
// We could in theory support patterns LDMatrix doesn't support,
// but that would also mean the MMA isn't supported and
// so we would have to lower to something completely different.
// MemCpy async is a more generic utility that we can use.
// Currently only allowed input paths are:
// ldmatrix -> mma or
// ldmatrix -> broadcast -> mma
// We actually wouldn't want too much flexibility here since
// this path is very perf critical. But the check itself
// can be made cleaner once we have the correct swizzle
// labeling.
// The most generic support would involve build out to
// support any pointwise ops that does not change the
// datalayout.
auto tv_def = tv->definition();
TORCH_INTERNAL_ASSERT(tv_def);
if (tv_def->isA<BroadcastOp>()) {
tv_def = tv_def->input(0)->definition();
}
TORCH_INTERNAL_ASSERT(tv_def);
TORCH_INTERNAL_ASSERT(ir_utils::isLdMatrixOp(tv_def));
}
// Output of ldmatrix is swizzled with the mma format, so it
// currently should not be fused with any pointwise ops. This
// check is to protect against these cases.
// This would also not be needed once scatter swizzle ready, should
// just become a swizzle format check if we wanted to fuse ldmatrix
// with any op other than mma.
void validateLdMatrixOutput(TensorView* tv) {
const auto& out_uses = tv->fusion()->unordered_uses(tv);
if (out_uses.empty()) {
return;
}
// TODO: restricting to single use pipelines for now which
// is true to matmul mainloop. This Could be relaxed to
// support more complex mma usage.
TORCH_INTERNAL_ASSERT(out_uses.size() == 1);
auto out_use = *(out_uses.begin());
if (out_use->isA<BroadcastOp>()) {
validateLdMatrixOutput(out_use->output(0)->as<TensorView>());
return;
}
TORCH_INTERNAL_ASSERT(
out_use->isA<MmaOp>(),
"validateLdMatrixOutput: currently only supports single mma use for ldmatrix",
out_use);
}
// Checks that the memory ops are supported on the targeted GPU
void validateArchMemoryOp(LoadStoreOp* ldst) {
switch (ldst->opType()) {
case LoadStoreOpType::LdMatrix:
case LoadStoreOpType::LdMatrixTranspose:
validateMinimumArch(7, 5);
validateLdMatrixOutput(ldst->out()->as<TensorView>());
return;
case LoadStoreOpType::CpAsync:
validateMinimumArch(8, 0);
return;
default:
return;
}
}
} // namespace
//! Validate data format and GPU arch compatibility of scheduled
//! mma operators on the fusion.
void validateMma(Fusion* fusion) {
auto exprs = StmtSort::getExprs(fusion);
for (auto expr : exprs) {
if (auto mma = dynamic_cast<MmaOp*>(expr)) {
validateMmaTensors(mma);
switch (mma->options().macro) {
case MmaOptions::MacroType::Volta_16_16_4:
validateMinimumArch(7, 0);
break;
case MmaOptions::MacroType::Turing_16_8_16:
case MmaOptions::MacroType::Turing_16_16_16:
validateMinimumArch(7, 5);
// Check that operands come from ldmatrix, can be
// relaxed once swizzles can be labeled on iterdomains.
validateTuringMmaInput(mma->inA()->as<TensorView>());
validateTuringMmaInput(mma->inB()->as<TensorView>());
break;
case MmaOptions::MacroType::Ampere_16_8_16:
case MmaOptions::MacroType::Ampere_16_16_16:
validateMinimumArch(8, 0);
// Check that operands come from ldmatrix, can be
// relaxed once swizzles can be labeled on iterdomains.
validateTuringMmaInput(mma->inA()->as<TensorView>());
validateTuringMmaInput(mma->inB()->as<TensorView>());
break;
default:
TORCH_INTERNAL_ASSERT(false, "validate mma: unsupported macro");
break;
}
}
if (auto ldst = dynamic_cast<LoadStoreOp*>(expr)) {
validateArchMemoryOp(ldst);
}
}
}
namespace {
// Utility function to validate a loop swizzle:
// 1. Throws an error if any output of the swizzle is not in leaf_domain set.
// 2. Warns if any output of the swizzle is not the concrete id of the loop
// map.
// The second case would make the codegen ignore this swizzle, as if it was not
// there at all.
void validateLoopSwizzle(
Expr* swizzle_expr,
std::unordered_set<IterDomain*>& leaf_domains) {
for (auto out_id :
ir_utils::filterByType<IterDomain>(swizzle_expr->outputs())) {
TORCH_INTERNAL_ASSERT(
leaf_domains.count(out_id),
"Loop swizzle can only be direct producer of leaf domains.");
if (GpuLower::current()->caMap()->getConcreteMappedID(
out_id, IdMappingMode::LOOP) != out_id) {
TORCH_WARN_ONCE("Ignored loop swizzle :", swizzle_expr->toString());
}
}
}
} // namespace
void validateSwizzle(Fusion* fusion) {
auto used_vals = fusion->usedMathVals();
for (auto tv : ir_utils::filterByType<TensorView>(used_vals)) {
if (tv->hasSwizzleOp()) {
std::unordered_set<IterDomain*> tv_leaf_domain_set(
tv->domain()->domain().begin(), tv->domain()->domain().end());
// Make sure no swizzle op is inlined:
auto inlined_swizzles = ir_utils::getAllSwizzlesBetween(
tv->getMaybeRFactorDomain(),
{tv->domain()->domain().begin(),
tv->domain()->domain().begin() + tv->getComputeAtPosition()});
auto not_inlined_swizzles = ir_utils::getAllSwizzlesBetween(
tv->getMaybeRFactorDomain(),
{tv->domain()->domain().begin() + tv->getComputeAtPosition(),
tv->domain()->domain().end()});
// Check inlined swizzles: only loop swizzles can be inlined currently
// as inlining data swizzles would require addtional support of unswizzle
// operator, which currently doesn't have important use cases.
for (auto swizzle_expr : inlined_swizzles) {
TORCH_INTERNAL_ASSERT(
swizzle_expr->as<Swizzle2D>()->swizzleMode() == SwizzleMode::Loop,
"Only support inlining loop swizzles");
validateLoopSwizzle(swizzle_expr, tv_leaf_domain_set);
}
std::unordered_set<Expr*> inlined_swizzle_set(
inlined_swizzles.begin(), inlined_swizzles.end());
// Check not inlined swizzles:
// Apply the loop swizzle check when it applies, and
// also make sure that the no swizzle is also in inlined_swizzle set.
// The latter would mean that one output of the swizzle is inlined while
// the other is not. Such case will not be supported.
for (auto swizzle_expr : not_inlined_swizzles) {
TORCH_INTERNAL_ASSERT(
!inlined_swizzle_set.count(swizzle_expr),
"Cannot partially inline across swizzle domains.",
swizzle_expr->toString());
if (swizzle_expr->as<Swizzle2D>()->swizzleMode() == SwizzleMode::Loop) {
validateLoopSwizzle(swizzle_expr, tv_leaf_domain_set);
}
}
}
}
}
void validateAndConvertIterDomainGrouping(Fusion* fusion) {
for (auto tv : ir_utils::allTvs(fusion)) {
bool is_grouped = false;
for (const auto id_idx : c10::irange(tv->nDims())) {
const auto id = tv->axis(id_idx);
auto ptype = GpuLower::current()
->caMap()
->getConcreteMappedID(id, IdMappingMode::LOOP)
->getParallelType();
if (ptype != ParallelType::Group) {
// Not a grouped ID
continue;
}
// Remember if a grouped ID is found
is_grouped = true;
// Grouping only makes sense for the normal iteration type
TORCH_CHECK(
id->getIterType() == IterType::Iteration,
"Invalid use of ParallelType::Group.",
" Grouping of ",
id->getIterType(),
" is not allowed. ",
tv->toString());
// Extent must be static
TORCH_CHECK(
id->extent()->getInt().has_value(),
"Invalid use of ParallelType::Group.",
" IterDomain must have a static extent: ",
id->toString());
// The CA position must be left of any grouped ID
TORCH_CHECK(
tv->getComputeAtPosition() <= id_idx,
"Invalid use of ParallelType::Group.",
" ComputeAt position must be left of grouped IDs: ",
tv->toString());
// Similarly, the produce-at position must be left of any grouped ID
TORCH_CHECK(
tv->getMaxProducerPosition() <= id_idx,
"Invalid use of ParallelType::Group.",
" ProduceAt position must be left of grouped IDs: ",
tv->toString());
// Halo is not allowed
TORCH_CHECK(
GpuLower::current()->haloInfo().getExtent(id) == nullptr,
"Invalid use of ParallelType::Group.",
" Grouping of halo-extended IterDomain, ",
id->toString(),
", is not supported. ",
tv->toString());
}
if (!is_grouped) {
continue;
}
// Must be defined by ReductionOp
auto def = tv->definition();
TORCH_CHECK(
def != nullptr,
"Invalid use of ParallelType::Group.",
" Definition of tv with ParallelType::Group not found. ",
tv->toString());
TORCH_CHECK(
tv->definition()->isA<ReductionOp>() ||
tv->definition()->isA<GroupedReductionOp>() ||
tv->definition()->isA<WelfordOp>() ||
tv->definition()->isA<GroupedWelfordOp>(),
"Invalid use of ParallelType::Group. Only ReductionOp, GroupedReductionOp, WelfordOp and GroupedWelfordOp are allowed. ",
tv->definition()->toString());
// Convert ReductionOp to GroupedReductionOp
if (tv->definition()->isA<ReductionOp>()) {
auto rop = def->as<ReductionOp>();
auto is_allreduce = rop->isAllreduce();
TORCH_CHECK(
is_allreduce,
"Invalid use of ParallelType::Group.",
" Only enabled for allreduce reductions: ",
rop->toString());
TORCH_CHECK(
tv->domain()->hasGridReduction(),
"Invalid use of ParallelType::Group.",
" Only enabled for grid reductions: ",
rop->toString());
std::vector<BinaryOpType> op_types({rop->getReductionOpType()});
std::vector<Val*> init_vals({rop->init()});
std::vector<Val*> outputs({rop->out()});
std::vector<Val*> inputs({rop->in()});
fusion->removeExpr(rop);
IrBuilder::create<GroupedReductionOp>(
static_cast<IrContainer*>(fusion),
op_types,
init_vals,
outputs,
inputs,
is_allreduce);
} else if (tv->definition()->isA<WelfordOp>()) {
// Convert WelfordOp to GroupedWelfordOp
auto wop = def->as<WelfordOp>();
auto is_allreduce = wop->isAllreduce();
TORCH_CHECK(
is_allreduce,
"Invalid use of ParallelType::Group.",
" Only enabled for allreduce reductions: ",
wop->toString());
TORCH_CHECK(
tv->domain()->hasGridReduction(),
"Invalid use of ParallelType::Group.",
" Only enabled for grid reductions: ",
wop->toString());
std::vector<WelfordTriplet> output_vals(
{{wop->outAvg(), wop->outVar(), wop->outN()}});
std::vector<WelfordTriplet> input_vals(
{{wop->inAvg(), wop->inVar(), wop->inN()}});
std::vector<WelfordTriplet> init_vals(
{{wop->initAvg(), wop->initVar(), wop->initN()}});
fusion->removeExpr(wop);
IrBuilder::create<GroupedWelfordOp>(
static_cast<IrContainer*>(fusion),
output_vals,
input_vals,
init_vals,
is_allreduce);
}
}
}
void validateGroupedReductions(Fusion* fusion) {
for (auto expr : StmtSort::getExprs(fusion)) {
if (auto grouped_reduction_op = dynamic_cast<GroupedReductionOp*>(expr)) {
const auto num_exprs = grouped_reduction_op->numExprs();
int num_grouped_iterations = 1;
auto out_tv = ir_utils::getTvOutput(grouped_reduction_op);
for (auto axis : out_tv->domain()->domain()) {
if (axis->getParallelType() == ParallelType::Group) {
num_grouped_iterations *= axis->extent()->getInt().value();
}
}
TORCH_CHECK(
num_exprs * num_grouped_iterations <= kMaxNumGroupedReductions,
"Too many grouped reductions: ",
grouped_reduction_op->toString(),
". Up to ",
kMaxNumGroupedReductions,
" reductions are allowed.");
}
}
}
} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch
|