File: manager.h

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (40 lines) | stat: -rw-r--r-- 1,266 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
#pragma once

#include <c10/macros/Export.h>
#include <torch/csrc/jit/ir/ir.h>

/*
 * This file handles compilation and execution of a CudaFusionGroup;
 *
 * A CudaFusionGroup node comes with `attr::Subgraph` containing the computation
 * graph. We compile the graph to generate CUDA function and cache them in a
 * registry. We cache & reuse kernels across nodes sharing identical graph.
 *
 * After compilation, we assign the key to cached kernel as an integer attribute
 * on the node `attr::cache_id`.
 */

namespace torch {
namespace jit {
namespace fuser {
namespace cuda {

// Get fusion_node ready for execution.
// find or compile `CudaKernel` for graph stored in `attr::Subgraph`
// this function assigns `attr::cache_id` to `fusion_node`
TORCH_CUDA_CU_API void compileCudaFusionGroup(Node* fusion_node);

// Execute fusion_node.
// Current protocol is that the function allocates output tensor append them to
// `stack` after execution.
// TODO: support shape inferencing. Right now we only handles static shape
TORCH_CUDA_CU_API void runCudaFusionGroup(
    const Node* fusion_node,
    Stack& stack);

TORCH_CUDA_CU_API void CudaFuseGraph(std::shared_ptr<Graph>& graph);

} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch