1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
|
#include <torch/csrc/jit/codegen/cuda/maxinfo_propagator.h>
#include <torch/csrc/jit/codegen/cuda/root_domain_map.h>
namespace torch {
namespace jit {
namespace fuser {
namespace cuda {
bool MaxInfoSpanningTree::Information::operator>(const Information& r) const {
return r < *this;
}
bool MaxInfoSpanningTree::Information::operator==(const Information& r) const {
return !(r < *this) && !(*this < r);
}
// Prim's algorithm
MaxInfoSpanningTree::MaxInfoSpanningTree(
TensorView* reference,
std::shared_ptr<Information> reference_info,
Selector* selector)
: reference_(reference),
reference_info_(reference_info),
selector_(selector) {}
void MaxInfoSpanningTree::compute_spanning_tree() {
// A set that allows us to quickly tell if a tensor has been replayed. If yes,
// then we will not bother computing if a new path to this tensor is worth
// taking (because the answer is always not worth)
std::unordered_set<TensorView*> replayed;
// A sorted list of possible next steps. The list is sorted in the order of
// ascending amount of preserved information about the reference tensor. The
// back of the list preserves the most amount of information about the
// reference tensor, and should always be the next step to take. We use
// std::list instead of std::priority_queue because C++'s
// std::priority_queue does not support increase-key, and might not be
// deterministic either.
std::list<NextHopWithInfo> candidates(1);
candidates.back().next_hop.from = nullptr;
candidates.back().next_hop.to = reference_;
candidates.back().info_to = reference_info_;
// Insert the given next hop the correct position in `candidates`. If there
// is an existing next hop that preserves more information, then we will just
// discard `info`.
auto insertNextHop = [&](const NextHopWithInfo& info) {
if (!*(info.info_from)) {
// When there is no more information about the starting tensor,
// we are not interested in continuing the path-finding.
return;
}
// Find if there is already a path to the dest tensor
auto existing = std::find_if(
candidates.begin(), candidates.end(), [&](const NextHopWithInfo& i) {
return i.next_hop.to == info.next_hop.to;
});
// Only insert if there is no existing path to the dest tensor, or the new
// path preserves more information about the starting tensor.
if (existing == candidates.end() || *existing < info) {
if (existing != candidates.end()) {
candidates.erase(existing);
}
auto pos = std::upper_bound(candidates.begin(), candidates.end(), info);
candidates.insert(pos, info);
}
};
auto allowC2P = [this](TensorView* from, TensorView* to) {
if (selector_ == nullptr) {
return true;
}
return selector_->allowC2P(from, to);
};
auto allowP2C = [this](TensorView* from, TensorView* to) {
if (selector_ == nullptr) {
return true;
}
return selector_->allowP2C(from, to);
};
auto allowSibling = [this](TensorView* from, TensorView* to) {
if (selector_ == nullptr) {
return true;
}
return selector_->allowSibling(from, to);
};
while (!candidates.empty()) {
const auto next_hop_info = candidates.back();
const auto& next_hop = next_hop_info.next_hop;
candidates.pop_back();
if (next_hop.from != nullptr) {
// nullptr used to start from reference
path_.push_back(next_hop);
}
replayed.emplace(next_hop.to);
for (auto sibling_tv : ir_utils::siblingTvsOf(next_hop.to)) {
if (replayed.count(sibling_tv) ||
!allowSibling(next_hop.to, sibling_tv)) {
continue;
}
insertNextHop(NextHopWithInfo(
NextHop(NextHopType::SIBLING, next_hop.to, sibling_tv),
next_hop_info.info_to,
computeInfoSibling(next_hop.to, sibling_tv, next_hop_info.info_to)));
}
for (auto consumer_tv : ir_utils::consumerTvsOf(next_hop.to)) {
if (replayed.count(consumer_tv) || !allowP2C(next_hop.to, consumer_tv)) {
continue;
}
insertNextHop(NextHopWithInfo(
NextHop(NextHopType::C_AS_P, next_hop.to, consumer_tv),
next_hop_info.info_to,
computeInfoCasP(next_hop.to, consumer_tv, next_hop_info.info_to)));
}
for (auto producer_tv : ir_utils::producerTvsOf(next_hop.to)) {
if (replayed.count(producer_tv) || !allowC2P(next_hop.to, producer_tv)) {
continue;
}
insertNextHop(NextHopWithInfo(
NextHop(NextHopType::P_AS_C, next_hop.to, producer_tv),
next_hop_info.info_to,
computeInfoPasC(next_hop.to, producer_tv, next_hop_info.info_to)));
}
}
}
void MaxInfoSpanningTree::traverse(Propagator* propagator) {
if (path_.empty()) {
compute_spanning_tree();
}
propagator->setUp();
for (const auto& next_hop : path_) {
switch (next_hop.type) {
case NextHopType::SIBLING:
propagator->propagateSibling(next_hop.from, next_hop.to);
break;
case NextHopType::C_AS_P:
propagator->propagateP2C(next_hop.from, next_hop.to);
break;
case NextHopType::P_AS_C:
propagator->propagateC2P(next_hop.from, next_hop.to);
break;
}
}
propagator->tearDown();
}
MaxRootDomainInfoSpanningTree::RootDomainInfo::operator bool() const {
return !info.empty();
}
bool MaxRootDomainInfoSpanningTree::RootDomainInfo::operator<(
const Information& r) const {
auto rr = dynamic_cast<const RootDomainInfo&>(r);
if (info.size() != rr.info.size()) {
return info.size() < rr.info.size();
}
size_t l_complete =
std::count_if(info.begin(), info.end(), [](const RootIDInfo& i) {
return i.is_complete;
});
size_t r_complete =
std::count_if(rr.info.begin(), rr.info.end(), [](const RootIDInfo& i) {
return i.is_complete;
});
return l_complete < r_complete;
}
namespace {
// Given `root_ids`, a list of IDs in the root domain of `tv`, find their
// corresponding IDs in the rfactor domain of `tv`.
std::unordered_set<IterDomain*> mapRootToRFactor(
TensorView* tv,
const std::unordered_set<IterDomain*>& root_ids) {
std::unordered_set<IterDomain*> mapped_rfactor_ids;
const auto& rfactor_dom = tv->getMaybeRFactorDomain();
for (auto id : rfactor_dom) {
if (root_ids.count(id) > 0) {
mapped_rfactor_ids.emplace(id);
continue;
}
for (auto root_id : root_ids) {
if (id == root_id || DependencyCheck::isDependencyOf(root_id, id)) {
mapped_rfactor_ids.emplace(id);
break;
}
}
}
return mapped_rfactor_ids;
}
// Given `rfactor_ids`, a list of IDs in the rfactor domain of `tv`, find their
// corresponding IDs in the root domain of `tv`.
std::unordered_set<IterDomain*> mapRFactorToRoot(
TensorView* tv,
const std::unordered_set<IterDomain*>& rfactor_ids) {
std::unordered_set<IterDomain*> mapped_root_ids;
for (auto id : tv->getRootDomain()) {
if (rfactor_ids.count(id) > 0) {
mapped_root_ids.emplace(id);
continue;
}
for (auto rfactor_id : rfactor_ids) {
if (DependencyCheck::isDependencyOf(id, rfactor_id)) {
mapped_root_ids.emplace(id);
break;
}
}
}
return mapped_root_ids;
}
} // namespace
// Given the preserved reference root ID info of a producer, compute
// the corresponding info in consumer. The given info may be represented by
// producer's root domain, or rfactor domain, depending on how we reached the
// producer during path-finding. If the given info is already represented with
// producer's rfactor domain, then we directly map it to the consumer's root
// domain. If the given info is represented with producer's root domain, we need
// to first map it to the rfactor domain of the producer, then we can map it to
// the consumer's root domain. The computed info will be represented by root
// domain as root domain contains the raw information.
std::shared_ptr<MaxInfoSpanningTree::Information> MaxRootDomainInfoSpanningTree::
computeInfoCasP(
TensorView* from,
TensorView* to,
std::shared_ptr<Information> from_info) const {
RootDomainInfo result;
TensorView* producer = from;
TensorView* consumer = to;
const auto& producer_root_id_info =
std::dynamic_pointer_cast<RootDomainInfo>(from_info)->info;
auto pairwise_map = PairwiseRootDomainMap(producer, consumer);
auto p2c_map = pairwise_map.mapProducerToConsumer(
producer->domain(), consumer->domain());
for (auto& info : producer_root_id_info) {
RootIDInfo consumer_info;
consumer_info.is_complete = info.is_complete;
consumer_info.is_rfactor = false;
// mapped root ids in producer -> mapped rfactor ids in producer
std::unordered_set<IterDomain*> producer_mapped_rfactor_ids;
if (producer->hasRFactor() && !info.is_rfactor) {
producer_mapped_rfactor_ids = mapRootToRFactor(producer, info.mapped_ids);
} else {
producer_mapped_rfactor_ids = info.mapped_ids;
}
// mapped rfactor ids in producer -> mapped root ids in consumer
for (auto producer_id : producer_mapped_rfactor_ids) {
auto it = p2c_map.find(producer_id);
if (it != p2c_map.end()) {
consumer_info.mapped_ids.insert(it->second);
} else {
consumer_info.is_complete = false;
}
}
// If at least one root id in the consumer contains information
// of this starting root id, then keep this record
if (!consumer_info.mapped_ids.empty()) {
result.info.push_back(consumer_info);
}
}
return std::make_shared<RootDomainInfo>(std::move(result));
}
// Given the preserved reference root ID info of a consumer, compute
// the corresponding info in producer. The given info may be represented by
// consumer's root domain, or rfactor domain, depending on how we reached the
// consumer during path-finding. If the given info is already represented with
// consumer's root domain, then we directly map it to the producer's rfactor
// domain. If the given info is represented with consumer's rfactor domain, we
// need to first map it to the root domain of the consumer, then we can map it
// to the producer's rfactor domain. The computed info will be represented by
// rfactor domain as rfactor domain contains the raw information.
std::shared_ptr<MaxInfoSpanningTree::Information> MaxRootDomainInfoSpanningTree::
computeInfoPasC(
TensorView* from,
TensorView* to,
std::shared_ptr<Information> from_info) const {
RootDomainInfo result;
TensorView* producer = to;
TensorView* consumer = from;
const auto& consumer_root_id_info =
std::dynamic_pointer_cast<RootDomainInfo>(from_info)->info;
auto pairwise_map = PairwiseRootDomainMap(producer, consumer);
auto c2p_map = pairwise_map.mapConsumerToProducer(
consumer->domain(), producer->domain());
for (auto& info : consumer_root_id_info) {
RootIDInfo producer_info;
producer_info.is_complete = info.is_complete;
producer_info.is_rfactor = true;
// mapped rfactor ids in consumer -> mapped root ids in consumer
std::unordered_set<IterDomain*> consumer_mapped_root_ids;
if (info.is_rfactor && consumer->hasRFactor()) {
consumer_mapped_root_ids = mapRFactorToRoot(consumer, info.mapped_ids);
} else {
consumer_mapped_root_ids = info.mapped_ids;
}
// mapped root ids in consumer -> mapped rfactor ids in producer
for (auto consumer_id : consumer_mapped_root_ids) {
auto it = c2p_map.find(consumer_id);
if (it != c2p_map.end()) {
producer_info.mapped_ids.insert(it->second);
} else {
producer_info.is_complete = false;
}
}
// We will stop at the rfactor ids in producer, and will not further map
// them into root ids in producer. This means, we only keep the unprocessed
// raw information of a tensor. This behavior is important to make sure that
// info is as accurate as possible throughout the path-finding.
//
// For example, in a C->P->C' path, we want to do
// C(root) -> P(rfactor) -> C'(root)
// instead of
// C(root) -> P(rfactor) -> P(root) -> P(rfactor) -> C'(root)
//
// and the above two paths do lead to different results:
//
// For example if you have a producer tensor
// root domain: [I1, I2]
// rfactor domain: [I3, I5]
// where I3, I4 = split(I1), I5 = merge(I4, I2)
// Then the P(rfactor) -> P(root) -> P(rfactor) could lead to
// P(rfactor: {I5}) -> P(root: {I1, I2}) -> P(rfactor: {I3, I5})
// which is not correct
// If at least one root id in the producer contains information
// of this starting root id, then keep this record
if (!producer_info.mapped_ids.empty()) {
result.info.push_back(producer_info);
}
}
return std::make_shared<RootDomainInfo>(std::move(result));
}
std::shared_ptr<MaxRootDomainInfoSpanningTree::RootDomainInfo>
MaxRootDomainInfoSpanningTree::getReferenceRootIDInfo(TensorView* tv) {
RootDomainInfo result;
const auto& root_domain = tv->getRootDomain();
result.info.reserve(root_domain.size());
for (auto id : root_domain) {
result.info.emplace_back(RootIDInfo{{id}, true, false});
}
return std::make_shared<RootDomainInfo>(std::move(result));
}
std::shared_ptr<MaxRootDomainInfoSpanningTree::RootDomainInfo>
MaxRootDomainInfoSpanningTree::getReferenceRootIDInfo(
TensorView* tv,
int64_t leaf_pos) {
if (leaf_pos < 0) {
leaf_pos += int64_t(tv->nDims()) + 1;
}
TORCH_CHECK(
leaf_pos >= 0 && leaf_pos <= tv->nDims(),
"MaxRootDomainInfoSpanningTree called on an leaf_pos outside valid range.");
RootDomainInfo result;
const auto& root_domain = tv->getMaybeRFactorDomain();
const auto& leaf_domain = tv->domain()->domain();
std::unordered_set<IterDomain*> selected_leaves(
leaf_domain.begin(), leaf_domain.begin() + leaf_pos);
for (auto id : root_domain) {
if (selected_leaves.count(id) > 0) {
result.info.emplace_back(RootIDInfo{{id}, true, tv->hasRFactor()});
continue;
}
for (auto selected_leaf_id : selected_leaves) {
if (DependencyCheck::isDependencyOf(id, selected_leaf_id)) {
result.info.emplace_back(RootIDInfo{{id}, true, tv->hasRFactor()});
break;
}
}
}
return std::make_shared<RootDomainInfo>(std::move(result));
}
// Given the preserved reference root ID info of a tensor, compute
// the corresponding info in its sibling. Since info has nothing to do with
// replay state, so sibling info is always identical by definition.
std::shared_ptr<MaxInfoSpanningTree::Information> MaxRootDomainInfoSpanningTree::
computeInfoSibling(
TensorView* from,
TensorView* to,
std::shared_ptr<Information> from_info) const {
return from_info;
}
void SpanningTreePrinter::propagateC2P(TensorView* from, TensorView* to) {
stream_ << "propagateC2P" << std::endl;
stream_ << " from: " << from->toString() << std::endl;
stream_ << " to: " << to->toString() << std::endl;
}
void SpanningTreePrinter::propagateP2C(TensorView* from, TensorView* to) {
stream_ << "propagateP2C" << std::endl;
stream_ << " from: " << from->toString() << std::endl;
stream_ << " to: " << to->toString() << std::endl;
}
void SpanningTreePrinter::propagateSibling(TensorView* from, TensorView* to) {
stream_ << "propagateSibling" << std::endl;
stream_ << " from: " << from->toString() << std::endl;
stream_ << " to: " << to->toString() << std::endl;
}
bool SetSelector::allowC2P(TensorView* from, TensorView* to) {
return selected_.count(to) > 0;
}
bool SetSelector::allowP2C(TensorView* from, TensorView* to) {
return selected_.count(to) > 0;
}
bool SetSelector::allowSibling(TensorView* from, TensorView* to) {
return true;
}
} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch
|