1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
|
#include <torch/csrc/jit/codegen/cuda/arith.h>
#include <torch/csrc/jit/codegen/cuda/ir_builder.h>
#include <torch/csrc/jit/codegen/cuda/ops/composite.h>
#include <torch/csrc/jit/codegen/cuda/transform_view.h>
namespace torch {
namespace jit {
namespace fuser {
namespace cuda {
ForwardDropoutResult dropout(TensorView* x, Val* prob) {
auto p1m = sub(IrBuilder::create<Double>(x->container(), 1.), prob);
auto zero_check =
add(eq(p1m, IrBuilder::create<Double>(x->container(), 0.)), p1m);
auto scale = div(IrBuilder::create<Double>(x->container(), 1.), zero_check);
return dropout(x, p1m, scale);
}
ForwardDropoutResult dropout(TensorView* x, Val* prob, Val* scale) {
TORCH_INTERNAL_ASSERT(x != nullptr, "Input is invalid.");
TORCH_INTERNAL_ASSERT(
prob != nullptr && prob->getDataType().has_value() &&
prob->getDataType().value() == DataType::Double,
"Probability is not a valid Double.");
TORCH_INTERNAL_ASSERT(
scale != nullptr && scale->getDataType().has_value() &&
scale->getDataType().value() == DataType::Double,
"Scale is not a valid Double.");
auto rand_vals = randlike(x);
auto mask = lt(rand_vals, prob);
auto apply_mask = mul(x, mask);
auto y = mul(apply_mask, scale);
return {y, mask};
}
TensorView* dropout_backward(TensorView* dy, TensorView* mask, Val* scale) {
TORCH_INTERNAL_ASSERT(dy != nullptr, "Grad Output is invalid.");
TORCH_INTERNAL_ASSERT(mask != nullptr, "Mask is invalid");
TORCH_INTERNAL_ASSERT(
scale != nullptr && scale->getDataType().has_value() &&
scale->getDataType().value() == DataType::Double,
"Scale is not a valid Double.");
auto grad_mask = mul(dy, mask);
auto dx = mul(grad_mask, scale);
return dx;
}
LstmResult lstm(
TensorView* prev_cell,
TensorView* in_x,
TensorView* forget_x,
TensorView* cell_x,
TensorView* out_x) {
TORCH_INTERNAL_ASSERT(
prev_cell != nullptr, "Previous cell state is invalid.");
TORCH_INTERNAL_ASSERT(in_x != nullptr, "In-gate input is invalid");
TORCH_INTERNAL_ASSERT(forget_x != nullptr, "Forget-gate input is invalid");
TORCH_INTERNAL_ASSERT(cell_x != nullptr, "Cell-gate input is invalid");
TORCH_INTERNAL_ASSERT(out_x != nullptr, "Out-gate input is invalid");
const auto in_gate = sigmoid(in_x);
const auto forget_gate = sigmoid(forget_x);
const auto cell_gate = tanh(cell_x);
const auto out_gate = sigmoid(out_x);
const auto cell = add(mul(forget_gate, prev_cell), mul(in_gate, cell_gate));
const auto hidden = mul(out_gate, tanh(cell));
return {cell, hidden};
}
namespace {
template <typename T>
TORCH_CUDA_CU_API T* sign(T* x) {
TORCH_INTERNAL_ASSERT(x != nullptr, "Input is invalid.");
auto zero = IrBuilder::create<Double>(x->container(), 0.);
auto one = IrBuilder::create<Double>(x->container(), 1.);
auto minus_one = IrBuilder::create<Double>(x->container(), -1.);
auto sign = where(gt(x, zero), one, where(lt(x, zero), minus_one, zero));
return castOp(x->getDataType().value(), sign);
}
} // namespace
TORCH_CUDA_CU_API TensorView* sign(TensorView* x) {
return sign<TensorView>(x);
}
TORCH_CUDA_CU_API Val* sign(Val* x) {
return sign<Val>(x);
}
TensorView* softplus(TensorView* x, Val* beta, Val* threshold) {
TORCH_INTERNAL_ASSERT(x != nullptr, "Input is invalid.");
TORCH_INTERNAL_ASSERT(beta != nullptr, "Beta is invalid.");
TORCH_INTERNAL_ASSERT(
threshold != nullptr, "Threshold is not a valid Double.");
auto op_beta = mul(x, beta);
auto maybe_result = div(log1p(exp(op_beta)), beta);
auto y = where(gt(op_beta, threshold), x, maybe_result);
return y;
}
TensorView* gelu(TensorView* x) {
TORCH_INTERNAL_ASSERT(x != nullptr, "Input is invalid");
auto kappa = IrBuilder::create<Double>(x->container(), M_SQRT1_2);
auto half = IrBuilder::create<Double>(x->container(), 0.5);
auto one = IrBuilder::create<Double>(x->container(), 1.);
auto cdf = mul(half, add(one, erf(mul(x, kappa))));
auto y = mul(x, cdf);
return y;
}
TensorView* gelu_backward(TensorView* dy, TensorView* x) {
TORCH_INTERNAL_ASSERT(dy != nullptr, "Grad Output is invalid.");
TORCH_INTERNAL_ASSERT(x != nullptr, "Input is invalid");
constexpr double kAlpha = M_2_SQRTPI * M_SQRT1_2 * 0.5;
const double kHalf = 0.5;
auto cdf_1 = mul(x, IrBuilder::create<Double>(x->container(), M_SQRT1_2));
auto cdf_2 = erf(cdf_1);
auto cdf_3 = add(cdf_2, IrBuilder::create<Double>(x->container(), 1.));
auto cdf_4 = mul(cdf_3, IrBuilder::create<Double>(x->container(), kHalf));
auto pdf_1 = mul(x, x);
auto pdf_2 = mul(pdf_1, IrBuilder::create<Double>(x->container(), -kHalf));
auto pdf_3 = exp(pdf_2);
auto out = addcmul(
cdf_4, x, pdf_3, IrBuilder::create<Double>(x->container(), kAlpha));
auto dx = mul(out, dy);
return dx;
}
TensorView* tanh_gelu(TensorView* x) {
TORCH_INTERNAL_ASSERT(x != nullptr, "Input is invalid");
constexpr double kBeta = M_SQRT2 * M_2_SQRTPI * 0.5;
constexpr double kKappa = 0.044715;
auto x_cube = mul(x, mul(x, x));
auto inner_1 = mul(IrBuilder::create<Double>(x->container(), kKappa), x_cube);
auto inner_2 = add(x, inner_1);
auto inner_3 = mul(IrBuilder::create<Double>(x->container(), kBeta), inner_2);
auto tanh_inner = tanh(inner_3);
auto out =
mul(x, add(IrBuilder::create<Double>(x->container(), 1.), tanh_inner));
auto y = mul(IrBuilder::create<Double>(x->container(), 0.5), out);
return y;
}
TensorView* tanh_gelu_backward(TensorView* dy, TensorView* x) {
TORCH_INTERNAL_ASSERT(dy != nullptr, "Grad Output is invalid.");
TORCH_INTERNAL_ASSERT(x != nullptr, "Input is invalid");
constexpr double kBeta = M_SQRT2 * M_2_SQRTPI * 0.5;
constexpr double kKappa = 0.044715;
auto x_sq = mul(x, x);
auto x_cube = mul(x, x_sq);
auto inner_1 = mul(IrBuilder::create<Double>(x->container(), kKappa), x_cube);
auto inner_2 = add(x, inner_1);
auto inner_3 = mul(IrBuilder::create<Double>(x->container(), kBeta), inner_2);
auto tanh_inner = tanh(inner_3);
auto left = mul(IrBuilder::create<Double>(x->container(), 0.5), x);
auto right = add(IrBuilder::create<Double>(x->container(), 1.), tanh_inner);
auto left_derivative =
mul(IrBuilder::create<Double>(x->container(), 0.5), right);
auto tanh_inner_sq = mul(tanh_inner, tanh_inner);
auto tanh_derivative =
sub(IrBuilder::create<Double>(x->container(), 1), tanh_inner_sq);
auto constant_mul_x_sq =
mul(IrBuilder::create<Double>(x->container(), kBeta * 3 * kKappa), x_sq);
auto inner_derivative =
add(IrBuilder::create<Double>(x->container(), kBeta), constant_mul_x_sq);
auto right_derivative = mul(left, mul(tanh_derivative, inner_derivative));
auto dx = mul(dy, add(left_derivative, right_derivative));
return dx;
}
TensorView* tanh_backward(TensorView* dy, TensorView* tanh_x) {
TORCH_INTERNAL_ASSERT(dy != nullptr, "Grad Output is invalid.");
TORCH_INTERNAL_ASSERT(tanh_x != nullptr, "Input is invalid");
auto one = IrBuilder::create<Double>(tanh_x->container(), 1.);
auto tanh_sq = mul(tanh_x, tanh_x);
auto sub_tanh_sq = sub(one, tanh_sq);
auto dx = mul(dy, sub_tanh_sq);
return dx;
}
TensorView* leaky_relu(TensorView* x, Val* negative_slope) {
TORCH_INTERNAL_ASSERT(x != nullptr, "input is invalid.");
TORCH_INTERNAL_ASSERT(negative_slope != nullptr, "negative_slope is invalid");
auto zero = IrBuilder::create<Double>(x->container(), 0.);
return where(ge(x, zero), x, mul(negative_slope, x));
}
TensorView* view_as_real(TensorView* x) {
auto input_type = x->getDataType().value();
TORCH_CHECK(
isComplexType(input_type),
"Operand of view_as_real must have complex type");
auto vec_type = getVectorType(getTypeFromComplexType(input_type), 2);
auto tv_vector = bitCastOp(vec_type, x);
return viewAsScalar(tv_vector);
}
} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch
|