File: normalization.h

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (184 lines) | stat: -rw-r--r-- 4,518 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
#pragma once

#include <c10/macros/Export.h>

#include <torch/csrc/jit/codegen/cuda/ir_interface_nodes.h>
#include <torch/csrc/jit/codegen/cuda/type.h>

//
// The operations defined in this header is intended as user facing functions.
// The user will provide the necessary input TensorViews and the function will
// create the correct intermediate nodes and return the output TensorViews.
//

namespace torch {
namespace jit {
namespace fuser {
namespace cuda {

struct ForwardNormResult {
  TensorView* output = nullptr;
  TensorView* mean = nullptr;
  TensorView* invstd = nullptr;
};

struct BackwardNormResult {
  TensorView* grad_input = nullptr;
  TensorView* grad_weight = nullptr;
  TensorView* grad_bias = nullptr;
};

struct ForwardRMSNormResult {
  TensorView* output = nullptr;
  TensorView* invstd = nullptr;
};

struct BackwardRMSNormResult {
  TensorView* grad_input = nullptr;
  TensorView* grad_weight = nullptr;
};

struct VarMeanResult {
  TensorView* var = nullptr;
  TensorView* mean = nullptr;
};

TORCH_CUDA_CU_API TensorView* mean(
    TensorView* x,
    const std::vector<int>& dims,
    bool keepdim);

TORCH_CUDA_CU_API TensorView* variance(
    TensorView* x,
    const std::vector<int>& dims,
    bool unbiased,
    bool keepdim);

TORCH_CUDA_CU_API TensorView* variance(
    TensorView* x,
    const std::vector<int>& dims,
    int64_t correction,
    bool keepdim);

TORCH_CUDA_CU_API VarMeanResult variance_mean(
    TensorView* x,
    const std::vector<int>& dims,
    int64_t correction,
    bool keepdim);

TORCH_CUDA_CU_API TensorView* standard_deviation(
    TensorView* x,
    const std::vector<int>& dims,
    bool unbiased,
    bool keepdim);

TORCH_CUDA_CU_API TensorView* softmax(TensorView* x, int dim);

TORCH_CUDA_CU_API TensorView* softmax_backward(
    TensorView* dy,
    TensorView* y,
    const int dim);

TORCH_CUDA_CU_API TensorView* log_softmax(TensorView* x, int dim);

TORCH_CUDA_CU_API TensorView* log_softmax_backward(
    TensorView* dy,
    TensorView* y,
    const int dim);

TORCH_CUDA_CU_API ForwardNormResult layer_norm(
    TensorView* x,
    const std::vector<int64_t>& norm_shape,
    TensorView* weight,
    TensorView* bias,
    Val* eps);

TORCH_CUDA_CU_API ForwardNormResult layer_norm(
    TensorView* x,
    const size_t kNormShapeNumDims,
    TensorView* weight,
    TensorView* bias,
    Val* eps);

TORCH_CUDA_CU_API ForwardRMSNormResult rms_norm(
    TensorView* x,
    const std::vector<int64_t>& norm_shape,
    TensorView* weight,
    Val* eps);

TORCH_CUDA_CU_API ForwardRMSNormResult rms_norm(
    TensorView* x,
    const size_t kNormShapeNumDims,
    TensorView* weight,
    Val* eps);

TORCH_CUDA_CU_API BackwardNormResult layer_norm_backward(
    TensorView* dy,
    TensorView* x,
    const std::vector<int64_t>& norm_shape,
    TensorView* mean,
    TensorView* rstd,
    TensorView* weight,
    TensorView* bias,
    const std::vector<bool>& output_mask);

TORCH_CUDA_CU_API BackwardRMSNormResult rms_norm_backward(
    TensorView* dy,
    TensorView* x,
    const std::vector<int64_t>& norm_shape,
    TensorView* rstd,
    TensorView* weight,
    const std::vector<bool>& output_mask);

TORCH_CUDA_CU_API ForwardNormResult batch_norm(
    TensorView* x,
    TensorView* weight,
    TensorView* bias,
    TensorView* running_mean,
    TensorView* running_var,
    const bool kTraining,
    Val* momentum,
    Val* eps,
    bool channels_last = false);

TORCH_CUDA_CU_API BackwardNormResult batch_norm_backward(
    TensorView* x,
    TensorView* dy,
    TensorView* weight,
    TensorView* running_mean,
    TensorView* running_var,
    TensorView* save_mean,
    TensorView* save_invstd,
    const bool kTraining,
    Val* eps,
    const std::vector<bool>& output_mask,
    bool channels_last = false);

TORCH_CUDA_CU_API ForwardNormResult instance_norm(
    TensorView* x,
    TensorView* weight,
    TensorView* bias,
    TensorView* running_mean,
    TensorView* running_var,
    const bool kUseInputStats, // kTraining?
    Val* momentum,
    Val* eps,
    bool channels_last = false);

TORCH_CUDA_CU_API BackwardNormResult instance_norm_backward(
    TensorView* x,
    TensorView* dy,
    TensorView* weight,
    TensorView* running_mean,
    TensorView* running_var,
    TensorView* save_mean,
    TensorView* save_invstd,
    const bool kTraining,
    Val* eps,
    const std::vector<bool>& output_mask,
    bool channels_last = false);

} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch