1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
|
#include <torch/csrc/jit/codegen/cuda/predicate_compute.h>
#include <torch/csrc/jit/codegen/cuda/arith.h>
#include <torch/csrc/jit/codegen/cuda/expr_evaluator.h>
#include <torch/csrc/jit/codegen/cuda/fusion.h>
#include <torch/csrc/jit/codegen/cuda/index_compute.h>
#include <torch/csrc/jit/codegen/cuda/instrumentation.h>
#include <torch/csrc/jit/codegen/cuda/ir_utils.h>
#include <torch/csrc/jit/codegen/cuda/lower2device.h>
#include <torch/csrc/jit/codegen/cuda/transform_iter.h>
#include <c10/util/irange.h>
namespace torch {
namespace jit {
namespace fuser {
namespace cuda {
namespace {
bool isTensorIndexOp(Expr* expr) {
const auto& outputs = expr->outputs();
return outputs.size() >= 1 && outputs[0]->isA<kir::TensorIndex>();
}
bool isOutputLocal(const Expr* expr) {
return std::all_of(
expr->outputs().begin(), expr->outputs().end(), [](const Val* output) {
return !output->isA<TensorView>() ||
output->as<TensorView>()->getMemoryType() == MemoryType::Local;
});
}
} // namespace
bool ParallelizedDomainPredicate::PredicateInfo::addDomain(IterDomain* id) {
auto concrete_id = GpuLower::current()->caMap()->getConcreteMappedID(
id, IdMappingMode::EXACT);
if (std::find(ids_.begin(), ids_.end(), concrete_id) == ids_.end()) {
ids_.push_back(concrete_id);
return true;
} else {
return false;
}
}
Bool* ParallelizedDomainPredicate::PredicateInfo::getPredicate() const {
Bool* pred = nullptr;
auto index = SimplifyingIrBuilder::create<NamedScalar>(
stringifyThread(pt_), DataType::Int);
for (const auto& pred_id : ids()) {
// Just sanity check that pred_id is concrete
TORCH_INTERNAL_ASSERT(
pred_id ==
GpuLower::current()->caMap()->getConcreteMappedID(
pred_id, IdMappingMode::EXACT));
auto new_pred = SimplifyingIrBuilder::ltExpr(index, pred_id->extent());
pred = SimplifyingIrBuilder::andExpr(pred, new_pred)->as<Bool>();
}
return pred;
}
namespace {
std::unordered_set<Val*> getNonUnswitchedRootDomains(
const std::vector<kir::ForLoop*>& loops,
size_t unswitched_loop_index) {
std::vector<Val*> non_unswited_leaf_domains;
std::transform(
loops.begin(),
loops.begin() + unswitched_loop_index,
std::back_inserter(non_unswited_leaf_domains),
[&](kir::ForLoop* loop) { return loop->iter_domain(); });
auto non_unswitched_inputs =
IterVisitor::getInputsTo(non_unswited_leaf_domains);
auto non_unswitched_root_doms =
ir_utils::filterByType<IterDomain>(non_unswitched_inputs);
std::unordered_set<Val*> non_unswitched_concrete_root_domains;
std::transform(
non_unswitched_root_doms.begin(),
non_unswitched_root_doms.end(),
std::inserter(
non_unswitched_concrete_root_domains,
non_unswitched_concrete_root_domains.end()),
[&](auto root_dom) {
return GpuLower::current()->caMap()->getConcreteMappedID(
root_dom, IdMappingMode::EXACT);
});
return non_unswitched_concrete_root_domains;
}
bool isFullyUnswitched(
IterDomain* loop_id,
const std::unordered_set<Val*>& non_unswitched_root_domains) {
auto root_vals = IterVisitor::getInputsTo({loop_id});
auto root_domains = ir_utils::filterByType<IterDomain>(root_vals);
return std::none_of(
root_domains.begin(), root_domains.end(), [&](auto root_dom) {
auto concrete_root_dom =
GpuLower::current()->caMap()->getConcreteMappedID(
root_dom, IdMappingMode::EXACT);
return non_unswitched_root_domains.count(concrete_root_dom) > 0;
});
}
} // namespace
std::unordered_map<
ParallelType,
ParallelizedDomainPredicate::PredicateInfo,
TypeHash>
ParallelizedDomainPredicate::getPredicateMap(
const Expr* expr,
const std::vector<kir::ForLoop*>& loops,
kir::ForLoop* unswitched_loop) {
const auto gpu_lower = GpuLower::current();
auto output_tvs = ir_utils::getTvs(expr->outputs());
if (output_tvs.empty()) {
return {};
}
// Initialize a map with empty predicate info
std::unordered_map<ParallelType, PredicateInfo, TypeHash> map;
for (auto pt : kParallelTypeThreads) {
map.insert({pt, PredicateInfo(pt)});
}
// For each loop, check if it's parallelized by an non-exact
// threading dimension. If yes and it's used in the given expr, the
// domain needs to be protected by a predicate on the thread/block
// index.
bool within_unswitch = false;
std::unordered_set<Val*> non_unswitched_root_domains;
for (const auto i : c10::irange(loops.size())) {
auto loop = loops[i];
// Parallel dimensions need not be predicated if fully unswitched.
if (loop == unswitched_loop) {
within_unswitch = true;
non_unswitched_root_domains = getNonUnswitchedRootDomains(loops, i);
}
auto loop_id = loop->iter_domain();
auto loop_ptype = loop_id->getParallelType();
// Not necessary to add a predicate if the paralle type is exact
if (!isParallelTypeThread(loop_ptype) ||
gpu_lower->parallelDimensionMap().isExact(loop_ptype)) {
continue;
}
// Parallel dimensions need not be predicated if fully unswitched.
if (within_unswitch &&
isFullyUnswitched(loop_id, non_unswitched_root_domains)) {
continue;
}
for (auto tv : output_tvs) {
// Check if the loop domain is used by the output tensor
auto it = std::find_if(
tv->domain()->domain().begin(),
tv->domain()->domain().end(),
[&](auto tv_id) {
return gpu_lower->caMap()->areMapped(
loop_id, tv_id, IdMappingMode::EXACT);
});
if (it == tv->domain()->domain().end()) {
continue;
}
IterDomain* tv_id = *it;
// If the corresponding domain is a broadcast, it's not really used.
if (tv_id->isBroadcast()) {
continue;
}
// If it's a root domain, it should be covered by the root
// predicates, so no extra predicate is required.
if (std::find(
tv->domain()->getRootDomain().begin(),
tv->domain()->getRootDomain().end(),
tv_id) != tv->domain()->getRootDomain().end()) {
continue;
}
// tv_id needs to be predicated. Adds it to the PredicateInfo map.
auto& info = map.at(loop_ptype);
info.addDomain(tv_id);
}
}
return map;
}
Bool* ParallelizedDomainPredicate::getPredicate(
const Expr* expr,
const std::vector<kir::ForLoop*>& loops) {
auto pred_map = getPredicateMap(expr, loops);
Val* pred = GpuLower::current()->kernel()->trueVal();
for (auto pt : kParallelTypeThreads) {
auto pred_info_it = pred_map.find(pt);
if (pred_info_it != pred_map.end()) {
const auto& pred_info = pred_info_it->second;
auto tid_pred = pred_info.getPredicate();
pred = SimplifyingIrBuilder::andExpr(pred, tid_pred);
}
}
TORCH_INTERNAL_ASSERT(pred != nullptr);
return pred->as<Bool>();
}
UnswitchPredicateKey::UnswitchPredicateKey()
: predicated_concrete_id_(nullptr) {
for (auto pt : kParallelTypeThreads) {
parallel_concrete_ids_.insert({pt, nullptr});
}
}
// For a predicated concrete domain, id, find which thread parallel
// types are used. For each used parallel type, find the concrete
// domain that the paralllel type is associated with. The parallelized
// concrete domains are used to uniquely collect all necessary
// unswitch predicates.
UnswitchPredicateKey::UnswitchPredicateKey(
IterDomain* predicated_consumer_id,
TensorView* consumer_tv,
IterDomain* predicated_concrete_id)
: predicated_concrete_id_(predicated_concrete_id) {
// Initialize the parallelized domain map
for (auto pt : kParallelTypeThreads) {
parallel_concrete_ids_.insert({pt, nullptr});
}
std::vector<Val*> all_parallelized_consumer_leaf_ids;
std::copy_if(
consumer_tv->domain()->domain().begin(),
consumer_tv->domain()->domain().end(),
std::back_inserter(all_parallelized_consumer_leaf_ids),
[](IterDomain* x) { return isParallelTypeThread(x->getParallelType()); });
// If the consumer domais are not parallelized at all, no need to
// differentiate keys based on how the predicated id is parallelized
if (all_parallelized_consumer_leaf_ids.empty()) {
return;
}
// All domains that are parallelized descendants of predicated_consumer_id
auto all_parallelized_consumer_ids = DependencyCheck::getAllValsBetween(
{predicated_consumer_id}, all_parallelized_consumer_leaf_ids);
// Just pick leaf domains
std::vector<IterDomain*> parallelized_consumer_leaf_ids;
std::copy_if(
consumer_tv->domain()->domain().begin(),
consumer_tv->domain()->domain().end(),
std::back_inserter(parallelized_consumer_leaf_ids),
[&](IterDomain* x) {
return std::find(
all_parallelized_consumer_ids.begin(),
all_parallelized_consumer_ids.end(),
x) != all_parallelized_consumer_ids.end();
});
if (parallelized_consumer_leaf_ids.empty()) {
// None of the parallelized leaf domains are derived from
// predicated_consumer_id
return;
}
// Find the corresponding concrete id for each parallel type
for (auto consumer_leaf : parallelized_consumer_leaf_ids) {
auto pt = consumer_leaf->getParallelType();
auto concrete_leaf = GpuLower::current()->caMap()->getConcreteMappedID(
consumer_leaf, IdMappingMode::EXACT);
parallel_concrete_ids_.at(pt) = concrete_leaf;
}
}
std::string UnswitchPredicateKey::toString() const {
std::stringstream ss;
ss << "Predicated domain: ";
if (predicatedId() != nullptr) {
ss << predicatedId();
} else {
ss << "null";
}
for (auto pt : kParallelTypeThreads) {
auto pid = parallelId(pt);
ss << ", " << pt << ": ";
if (pid) {
ss << pid;
} else {
ss << "null";
}
}
return ss.str();
}
std::size_t UnswitchPredicateKeyHash::operator()(
const UnswitchPredicateKey& key) const {
auto h = std::hash<const IterDomain*>{}(key.predicatedId());
for (auto pt : kParallelTypeThreads) {
h = h ^ std::hash<const IterDomain*>{}(key.parallelId(pt));
}
return h;
};
Bool* PredicateCompute::getInlinePredicate(
const Expr* expr,
const std::vector<kir::ForLoop*>& loops,
Bool* thread_pred,
PredicateType pred_type) {
FUSER_PERF_SCOPE("GpuLower::Lower::getInlinePredicate");
const auto gpu_lower = GpuLower::current();
// If outputs are registers, no need to predicate for threads
if (isOutputLocal(expr)) {
thread_pred = gpu_lower->kernel()->trueVal();
}
if (loops.empty()) {
TORCH_INTERNAL_ASSERT(thread_pred != nullptr);
return thread_pred;
}
auto out_tv = ir_utils::getTvOutput(expr);
TORCH_INTERNAL_ASSERT(out_tv != nullptr, "Missing TensorView output");
// Predicates for non-exact parallel dimensions must be used even
// when PredicateElimination::canOmitPredicate is true.
auto parallel_dom_pred =
ParallelizedDomainPredicate::getPredicate(expr, loops);
TORCH_INTERNAL_ASSERT(parallel_dom_pred != nullptr);
if (gpu_lower->predicateElimination().canOmitPredicate(expr)) {
return SimplifyingIrBuilder::andExpr(thread_pred, parallel_dom_pred)
->as<Bool>();
}
auto pred_info_vec = Index::getReferenceRootPredicates(
out_tv, loops, nullptr, pred_type == PredicateType::Padding);
std::vector<Bool*> preds;
// When pred_type is ReductionWrite, filter out predicates for
// reduction axes. For blockReduce, this is necessary when reduction
// axes start at non-zero offsets and parallelized with TID since
// blockReduce returns a valid output only at offset-zero
// threads. Similarly, for gridReduce, the last block to store the
// output may be predicated out with the read predicate, so the
// write predicate needs to ignore the reduction axes.
bool non_zero_start_found = false;
for (const auto& pred_info : pred_info_vec) {
if (pred_type == PredicateType::ReductionWrite) {
const auto& consumer_ids = pred_info.rootIds();
bool pred_for_reduction_axis = false;
for (auto consumer_id : consumer_ids) {
if (consumer_id->isReduction()) {
if (!consumer_id->start()->isZeroInt()) {
non_zero_start_found = true;
}
pred_for_reduction_axis = true;
break;
}
}
// Don't add the predicate if it corresponds to a reduction axis
if (pred_for_reduction_axis) {
continue;
}
}
preds.push_back(pred_info.startPredicate());
preds.push_back(pred_info.stopPredicate());
}
// When generating a predicate for blockReduce writes and not for
// gridReduce, if all reduction axes start with zero, we can just
// use the same predicate for reads. nullptr is returned then.
if (pred_type == PredicateType::ReductionWrite && !non_zero_start_found &&
!out_tv->domain()->hasGridReduction()) {
return nullptr;
}
preds.push_back(parallel_dom_pred);
if (thread_pred != nullptr) {
preds.push_back(thread_pred);
}
if (preds.empty()) {
return GpuLower::current()->kernel()->trueVal();
}
Val* cond = preds[0];
for (const auto i : c10::irange(1, preds.size())) {
cond = SimplifyingIrBuilder::andExpr(cond, preds[i]);
}
return cond->as<Bool>();
}
Bool* UnswitchPredicate::get(
const std::vector<kir::ForLoop*>& outer_loops,
kir::ForLoop* unrolled_loop) {
FUSER_PERF_SCOPE("GpuLower::Lower::UnswitchPredicate::get");
UnswitchPredicate up(outer_loops, unrolled_loop);
Val* unswitch_pred = GpuLower::current()->kernel()->trueVal();
for (auto pred : up.predicates_) {
unswitch_pred = SimplifyingIrBuilder::andExpr(unswitch_pred, pred);
}
return unswitch_pred->as<Bool>();
}
void UnswitchPredicate::predicateOn(Expr* tv_expr) {
FUSER_PERF_SCOPE("GpuLower::Lower::UnswitchPredicate::predicateOn");
if (for_loops_.empty()) {
return;
}
const auto gpu_lower = GpuLower::current();
// FIXME:
// Needed to keep the predicate of cp.async initialization to get the
// inverted predicate,
// see [Predicate Inversion for CpAsync]. In a follow up both this part and
// the [Predicate Inversion for CpAsync] should be cleaned up together.
if (gpu_lower->predicateElimination().canOmitPredicate(tv_expr) &&
!ir_utils::isCpAsyncInit(tv_expr)) {
addParallelizedDomainPredicates(tv_expr);
return;
}
auto out_tv = ir_utils::getTvOutput(tv_expr);
TORCH_INTERNAL_ASSERT(out_tv != nullptr, "Missing TensorView output");
auto ref_pred_info = Index::getReferenceRootPredicates(
out_tv, for_loops_, unrolled_loop_, false);
// If RootPredicateInfo has a static predicate that is more
// restrictive than the current one, replace the current with the
// new one. If it has a dynamic predicate, add it to the dynamic
// predicate list. Since the final static predicate can't be
// determined until all expressions are analyzed, predicates are
// temporarily placed in the predicated_keys map and the final
// predicates are generated in the finalize function.
for (const auto& pred_info : ref_pred_info) {
TORCH_INTERNAL_ASSERT(pred_info.startPredicate() != nullptr);
TORCH_INTERNAL_ASSERT(pred_info.stopPredicate() != nullptr);
const auto& root_ids = pred_info.rootIds();
bool add_pred = false;
// Used to find a matching existing MergedPredicates
UnswitchPredicateKey first_key;
bool first_key_set = false;
for (auto root_id : root_ids) {
auto concrete_root_id = gpu_lower->caMap()->getConcreteMappedID(
root_id, IdMappingMode::EXACT);
if (root_id->isBroadcast()) {
continue;
}
UnswitchPredicateKey key(root_id, out_tv, concrete_root_id);
auto inserted = predicated_keys_.insert(key).second;
add_pred = add_pred || inserted;
if (!first_key_set) {
first_key = key;
first_key_set = true;
}
}
if (!first_key_set) {
// No predicate generated
continue;
}
// The start and stop offsets may need to be merged to avoid
// redundant predicates. When these offsets are zero, nothing is
// done. When non-zero, find the corresponding MergedPredicates
// and merge both the start and stop offsets. Note that the
// offsets are non-zero, the predicates must be generated at a
// root domain, so root_ids.size() must be one. That unique root
// domain is used as a key to find the corresponding
// MergedPredicate.
// Initialize with an invalid iterator to signal no corresponding
// MergedPredicates is found yet.
auto merged_pred_it = pending_predicates_.end();
if (add_pred) {
// This is a new predicate for the root domain. Initialize a new
// MergedPredicates and add it to the pending list.
UnswitchPredicate::MergedPredicates merged_pred;
// To look up this MergedPredicates for other predicates
// generated for the same predicate key
if (root_ids.size() == 1) {
merged_pred.predicate_key = first_key;
}
pending_predicates_.push_back(merged_pred);
merged_pred_it =
pending_predicates_.begin() + pending_predicates_.size() - 1;
} else if (root_ids.size() == 1) {
// If not new, try to find a corresponding MergedPredicates.
merged_pred_it = std::find_if(
pending_predicates_.begin(),
pending_predicates_.end(),
[&first_key](const auto& merged_predicates) {
return merged_predicates.predicate_key == first_key;
});
// Note: It is possible that no matching merged predicate info
// is found. Since add_pred is false here, the root domain is
// already predicated. It must mean that the root domain
// is included in a contiguous merged domain, which means there
// must be no halo-extended domain involved.
}
// If a corresponding MergedPredicates is found, merge both the
// start and stop offsets.
if (merged_pred_it != pending_predicates_.end()) {
mergeUnswitchPredicateOffsets(
pred_info.startPredicate(),
pred_info.startOffset(),
merged_pred_it->start,
true);
mergeUnswitchPredicateOffsets(
pred_info.stopPredicate(),
pred_info.stopOffset(),
merged_pred_it->stop,
false);
}
}
addParallelizedDomainPredicates(tv_expr);
}
void UnswitchPredicate::addParallelizedDomainPredicates(Expr* tv_expr) {
auto pred_map = ParallelizedDomainPredicate::getPredicateMap(
tv_expr, for_loops_, unrolled_loop_);
for (auto pt : kParallelTypeThreads) {
auto pred_info_it = pred_map.find(pt);
if (pred_info_it == pred_map.end()) {
continue;
}
const auto& new_info = pred_info_it->second;
auto& predicated =
parallelized_dom_predicates_
.insert({pt, ParallelizedDomainPredicate::PredicateInfo{pt}})
.first->second;
for (auto id : new_info.ids()) {
if (predicated.addDomain(id)) {
predicates_.push_back(new_info.getPredicate());
}
}
}
}
void UnswitchPredicate::openLoop(kir::ForLoop* fl) {
FUSER_PERF_SCOPE("GpuLower::Lower::UnswitchPredicate::openLoop");
for_loops_.push_back(fl);
for (auto expr : fl->body().exprs()) {
if (ir_utils::isTvOp(expr) || isTensorIndexOp(expr)) {
predicateOn(expr);
} else if (auto ite = dynamic_cast<kir::IfThenElse*>(expr)) {
openIte(ite);
} else if (auto for_loop = dynamic_cast<kir::ForLoop*>(expr)) {
openLoop(for_loop);
}
}
for_loops_.pop_back();
}
void UnswitchPredicate::openIte(kir::IfThenElse* ite) {
FUSER_PERF_SCOPE("GpuLower::Lower::UnswitchPredicate::openIte");
// only expand the ite thenBody
for (auto expr : ite->thenBody().exprs()) {
if (ir_utils::isTvOp(expr) || isTensorIndexOp(expr)) {
predicateOn(expr);
} else if (auto ite = dynamic_cast<kir::IfThenElse*>(expr)) {
openIte(ite);
} else if (auto for_loop = dynamic_cast<kir::ForLoop*>(expr)) {
openLoop(for_loop);
}
}
}
void UnswitchPredicate::finalize() {
for (const auto& merged_pred : pending_predicates_) {
const auto& start_info = merged_pred.start;
if (start_info.static_pred) {
predicates_.push_back(start_info.static_pred);
}
for (auto dynamic_pred : start_info.dynamic_preds) {
predicates_.push_back(dynamic_pred);
}
const auto& stop_info = merged_pred.stop;
if (stop_info.static_pred) {
predicates_.push_back(stop_info.static_pred);
}
for (auto dynamic_pred : stop_info.dynamic_preds) {
predicates_.push_back(dynamic_pred);
}
}
}
void UnswitchPredicate::mergeUnswitchPredicateOffsets(
Bool* predicate,
Val* offset,
MergedPredicates::Info& merged_predicate_info,
bool is_start) {
auto is_more_restrictive = [&is_start](int64_t new_val, int64_t current_val) {
if (is_start) {
return new_val < current_val;
} else {
return new_val > current_val;
}
};
auto offset_int = dynamic_cast<Int*>(offset);
// If it's a static predicate, replace the current one if it's
// more restrictive. If it's dynamic, just adds it to the dynamic
// predicate list.
if (offset_int && offset_int->isConst()) {
auto offset_const = offset_int->value().value();
auto& static_pred = merged_predicate_info.static_pred;
auto& static_offset = merged_predicate_info.static_offset;
if (static_pred == nullptr ||
is_more_restrictive(offset_const, static_offset)) {
static_pred = predicate;
static_offset = offset_const;
}
} else {
merged_predicate_info.dynamic_preds.push_back(predicate);
}
}
UnswitchPredicate::UnswitchPredicate(
std::vector<kir::ForLoop*> outer_loops,
kir::ForLoop* unrolled_loop)
: for_loops_(std::move(outer_loops)), unrolled_loop_(unrolled_loop) {
openLoop(unrolled_loop);
finalize();
}
} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch
|