1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
|
#include <torch/csrc/jit/codegen/cuda/ir_iostream.h>
#include <torch/csrc/jit/codegen/cuda/ir_utils.h>
#include <torch/csrc/jit/codegen/cuda/iter_visitor.h>
#include <torch/csrc/jit/codegen/cuda/root_domain_map.h>
#include <sstream>
namespace torch {
namespace jit {
namespace fuser {
namespace cuda {
std::unordered_map<IterDomain*, IterDomain*> RootDomainMap::
mapProducerToConsumer(
const TensorDomain* producer,
const TensorDomain* consumer,
const std::unordered_set<IterDomain*>& root_dims_to_map) const {
return map(producer, consumer, root_dims_to_map, true);
}
std::unordered_map<IterDomain*, IterDomain*> RootDomainMap::
mapProducerToConsumer(
const TensorDomain* producer,
const TensorDomain* consumer) const {
std::unordered_set<IterDomain*> root_dims_to_map(
producer->getMaybeRFactorDomain().begin(),
producer->getMaybeRFactorDomain().end());
return mapProducerToConsumer(producer, consumer, root_dims_to_map);
}
std::unordered_map<IterDomain*, IterDomain*> RootDomainMap::
mapConsumerToProducer(
const TensorDomain* consumer,
const TensorDomain* producer,
const std::unordered_set<IterDomain*>& root_dims_to_map) const {
return map(producer, consumer, root_dims_to_map, false);
}
std::unordered_map<IterDomain*, IterDomain*> RootDomainMap::
mapConsumerToProducer(
const TensorDomain* consumer,
const TensorDomain* producer) const {
std::unordered_set<IterDomain*> root_dims_to_map(
consumer->getRootDomain().begin(), consumer->getRootDomain().end());
return mapConsumerToProducer(consumer, producer, root_dims_to_map);
}
PairwiseRootDomainMap::PairwiseRootDomainMap(
const TensorView* producer,
const TensorView* consumer,
bool is_exact)
: producer_tv_(producer), consumer_tv_(consumer), is_exact_(is_exact) {
TORCH_INTERNAL_ASSERT(producer != nullptr);
TORCH_INTERNAL_ASSERT(consumer != nullptr);
TORCH_INTERNAL_ASSERT(producer->fusion() == consumer->fusion());
// Make sure they are really a producer and its consumer
TORCH_INTERNAL_ASSERT(
producer->isConsumerOf(consumer),
"Not a producer-consumer pair: ",
producer,
", ",
consumer);
}
std::unordered_map<IterDomain*, IterDomain*> PairwiseRootDomainMap::map(
const TensorDomain* producer,
const TensorDomain* consumer,
const std::unordered_set<IterDomain*>& root_dims_to_map,
bool producer_to_consumer) const {
// Sanity check that the given producer and consumer domains are
// really the TensorDomains of the producer and consumer TensorViews
// given to the constructor.
TORCH_INTERNAL_ASSERT(producer_tv_->domain() == producer);
TORCH_INTERNAL_ASSERT(consumer_tv_->domain() == consumer);
if (consumer_tv_->definition()->isA<TransposeOp>()) {
return mapTranspose(
producer, consumer, root_dims_to_map, producer_to_consumer);
}
std::vector<bool> broadcast_flags;
if (BroadcastOp* bop =
dynamic_cast<BroadcastOp*>(consumer_tv_->definition())) {
broadcast_flags = bop->getBroadcastDimFlags();
}
std::unordered_map<IterDomain*, IterDomain*> dom_map;
const auto producer_root =
TensorDomain::noReductions(producer->getMaybeRFactorDomain());
const auto& consumer_root = consumer->getRootDomain();
size_t itc = 0, itp = 0;
while (itc < consumer_root.size() && itp < producer_root.size()) {
IterDomain* producer_id = producer_root[itp];
IterDomain* consumer_id = consumer_root[itc];
// When the consumer ID is a new broadcast domain, there is no
// mapping for it.
if (!broadcast_flags.empty() && broadcast_flags.at(itc)) {
TORCH_INTERNAL_ASSERT(consumer_id->isBroadcast());
itc++;
continue;
}
// In exact mapping, do not map broadcast domains with
// non-broadcast domains
if (is_exact_ && producer_id->isBroadcast() != consumer_id->isBroadcast()) {
itc++;
itp++;
continue;
}
IterDomain* map_key_id = producer_id;
IterDomain* map_value_id = consumer_id;
if (!producer_to_consumer) {
std::swap(map_key_id, map_value_id);
}
if (root_dims_to_map.find(map_key_id) != root_dims_to_map.end()) {
dom_map.insert(std::make_pair(map_key_id, map_value_id));
}
itc++;
itp++;
}
return dom_map;
}
std::unordered_map<IterDomain*, IterDomain*> PairwiseRootDomainMap::
mapTranspose(
const TensorDomain* producer,
const TensorDomain* consumer,
const std::unordered_set<IterDomain*>& root_dims_to_map,
bool producer_to_consumer) const {
const auto producer_root =
TensorDomain::noReductions(producer->getMaybeRFactorDomain());
const auto& consumer_root = consumer->getRootDomain();
std::unordered_map<IterDomain*, IterDomain*> dom_map;
TransposeOp* top = dynamic_cast<TransposeOp*>(consumer_tv_->definition());
TORCH_INTERNAL_ASSERT(top != nullptr);
const auto& new2old = top->new2old();
for (const auto i : c10::irange(consumer_root.size())) {
IterDomain* map_key_id = producer_root[new2old[i]];
IterDomain* map_value_id = consumer_root[i];
// In exact mapping, do not map broadcast domains with
// non-broadcast domains
if (is_exact_ && map_key_id->isBroadcast() != map_value_id->isBroadcast()) {
continue;
}
if (!producer_to_consumer) {
std::swap(map_key_id, map_value_id);
}
if (root_dims_to_map.find(map_key_id) != root_dims_to_map.end()) {
dom_map.insert(std::make_pair(map_key_id, map_value_id));
}
}
return dom_map;
}
std::string PairwiseRootDomainMap::toString() const {
std::stringstream ss;
ss << "{producer: " << producer() << ", consumer: " << consumer();
auto p2c = mapProducerToConsumer(producer()->domain(), consumer()->domain());
for (auto pair : p2c) {
ss << ", " << pair.first->toString() << " -> " << pair.second->toString();
}
ss << "}";
return ss.str();
}
namespace {
template <typename T>
auto ensureMapping(
T& m,
const typename T::key_type& key,
const typename T::mapped_type& init_value) {
auto it = m.find(key);
if (it == m.end()) {
it = m.insert({key, init_value}).first;
}
return it;
}
} // namespace
std::string DomainKey::toString() const {
std::stringstream ss;
ss << "{";
if (td()) {
ss << td() << " (root: " << td()->getRootDomain()
<< ", maybe rfactor: " << td()->getMaybeRFactorDomain() << ")";
} else {
ss << "null";
}
ss << ", ";
if (id()) {
ss << id();
} else {
ss << "null";
}
if (concreteId()) {
ss << " (" << concreteId() << ")";
}
ss << "}";
return ss.str();
}
UnmappableReductionDomains::UnmappableReductionDomains() {
Fusion* fusion = FusionGuard::getCurFusion();
traverse(fusion);
}
namespace {
//! Find all domains that a given domain is dependent on
class FindInputDomains : BackwardVisitor {
private:
FindInputDomains(TensorView* tv, const IterDomain* id)
: BackwardVisitor(false), tv_(tv) {
input_keys_.insert(DomainKey(tv_->domain(), id));
}
DomainKeySet find() {
traverseFrom(tv_->fusion(), {tv_});
return input_keys_;
}
void handle(Expr* expr) override {
for (auto output : expr->outputs()) {
if (!output->isA<TensorView>()) {
continue;
}
for (auto input : expr->inputs()) {
if (!input->isA<TensorView>()) {
continue;
}
propagate(input->as<TensorView>(), output->as<TensorView>());
}
}
}
void propagate(TensorView* in_tv, TensorView* out_tv) {
auto c2p = PairwiseRootDomainMap(in_tv, out_tv)
.mapConsumerToProducer(out_tv->domain(), in_tv->domain());
for (auto root_dom : out_tv->getRootDomain()) {
DomainKey out_key({out_tv->domain(), root_dom});
if (input_keys_.find(out_key) == input_keys_.end()) {
continue;
}
auto input_id_it = c2p.find(root_dom);
if (input_id_it == c2p.end()) {
continue;
}
DomainKey input_key(in_tv->domain(), input_id_it->second);
input_keys_.insert(input_key);
}
}
private:
TensorView* tv_ = nullptr;
DomainKeySet input_keys_;
public:
static DomainKeySet find(TensorView* tv, const IterDomain* id) {
return FindInputDomains(tv, id).find();
}
};
} // namespace
void UnmappableReductionDomains::handleReductionOutput(TensorView* out_tv) {
std::vector<DomainKey> reduction_keys;
for (const auto id : out_tv->getRootDomain()) {
if (id->isReduction()) {
DomainKey key(out_tv->domain(), id);
reduction_keys.push_back(key);
reduction_domains_.insert({key, {}});
}
}
auto use_chains = DependencyCheck::getAllUseChains(out_tv);
for (const auto& chain : use_chains) {
for (const auto& tv : ir_utils::filterByType<TensorView>(chain)) {
// Do not include the tensor itself in its consumers
if (tv == out_tv) {
continue;
}
const auto& root_domain = tv->getRootDomain();
for (const auto& id : root_domain) {
DomainKey consumer_key(tv->domain(), id);
for (const auto& reduction_key : reduction_keys) {
reduction_domains_.at(reduction_key).insert(consumer_key);
}
}
}
}
for (const auto& reduction_key : reduction_keys) {
reduction_domain_inputs_.insert(
{reduction_key, FindInputDomains::find(out_tv, reduction_key.id())});
}
}
void UnmappableReductionDomains::handle(ReductionOp* op) {
// Builds a map from reduction domains to consumer domains.
TensorView* out_tv = op->out()->as<TensorView>();
handleReductionOutput(out_tv);
}
void UnmappableReductionDomains::handle(GroupedReductionOp* op) {
// Builds a map from reduction domains to consumer domains.
for (auto out : op->outputs()) {
handleReductionOutput(out->as<TensorView>());
}
}
void UnmappableReductionDomains::handle(MmaOp* mma) {
// Builds a map from reduction domains to consumer domains.
TensorView* out_tv = mma->out()->as<TensorView>();
handleReductionOutput(out_tv);
}
void UnmappableReductionDomains::handle(WelfordOp* op) {
// Builds a map from reduction domains to consumer domains.
handleReductionOutput(op->outAvg()->as<TensorView>());
handleReductionOutput(op->outVar()->as<TensorView>());
handleReductionOutput(op->outN()->as<TensorView>());
}
bool UnmappableReductionDomains::isReductionOutputMapped(
const DomainKeySet& consumer_domains,
const ComputeAtRootDomainMap& root_map) const {
// Check each reduction domain if any of the consumer domains
// conflicts with it
for (const auto& kv : reduction_domains_) {
const DomainKey& reduction_domain = kv.first;
// Domains that must not be mapped with the reduction domain
const DomainKeySet& incompatible_domains = kv.second;
// Input domains to the reduction domain
const auto& input_keys = reduction_domain_inputs_.at(reduction_domain);
// Check if any of the consumer domains is an input to the
// reduction
auto it = std::find_if(
consumer_domains.begin(),
consumer_domains.end(),
[&](const auto& consumer_domain) {
return std::find(
input_keys.begin(), input_keys.end(), consumer_domain) !=
input_keys.end();
});
// None of the consumer domains is used for the reduction
// domain. They should be safe with respect to this reduction
// domain
if (it == consumer_domains.end()) {
continue;
}
// A consumer domain that is an input to the reduction domain
const DomainKey& input_to_reduction = *it;
// Check if mapping input_to_reduction with the other domains in
// consumer_domains. If there's a domain that is a consumer of the
// reduction, they must not be mapped together
for (const auto& consumer_domain : consumer_domains) {
if (consumer_domain == input_to_reduction) {
continue;
}
if (std::any_of(
incompatible_domains.begin(),
incompatible_domains.end(),
[&](const DomainKey& incompatible_domain) {
return root_map.canMap(
consumer_domain.td(),
consumer_domain.id(),
incompatible_domain.td(),
incompatible_domain.id());
})) {
return true;
}
}
}
return false;
}
std::string UnmappableReductionDomains::toString() const {
std::stringstream ss;
ss << "Reduction-to-consumer map\n";
for (const auto& kv : reduction_domains_) {
ss << "\tReduction: " << kv.first.toString() << "\n";
for (const auto& mapped_val : kv.second) {
ss << "\t\tConsumer domain: " << mapped_val.toString() << "\n";
}
}
ss << "Reduction-to-producer map\n";
for (const auto& kv : reduction_domain_inputs_) {
ss << "\tReduction: " << kv.first.toString() << "\n";
for (const auto& mapped_val : kv.second) {
ss << "\t\tProducer domain: " << mapped_val.toString() << "\n";
}
}
return ss.str();
}
void ComputeAtRootDomainMap::build(bool map_through_reduction) {
// Make sure we start from scratch. Throw away previous results.
eq_set_.clear();
bcast_map_.clear();
new_broadcast_domains_.clear();
ComputeAtRootDomainMapBuilder builder(*this, map_through_reduction);
}
bool ComputeAtRootDomainMap::canMap(
const TensorDomain* td_a,
const IterDomain* id_a,
const TensorDomain* td_b,
const IterDomain* id_b) const {
TORCH_INTERNAL_ASSERT(
id_a->definition() == nullptr || id_a->isRFactorProduct(),
"Non-root domain is not supported: ",
id_a);
TORCH_INTERNAL_ASSERT(
id_b->definition() == nullptr || id_b->isRFactorProduct(),
"Non-root domain is not supported: ",
id_b);
// Forward to overloaded functions
if (!id_a->isBroadcast() && !id_b->isBroadcast()) {
return canMap(DomainKey(td_a, id_a), DomainKey(td_b, id_b));
} else if (!id_a->isBroadcast()) {
return canMap(DomainKey(td_a, id_a), td_b, id_b);
} else if (!id_b->isBroadcast()) {
return canMap(DomainKey(td_b, id_b), td_a, id_a);
}
// At this point, both are broadcast. Every pair of concrete IDs of
// both id_a and id_b needs to be looked at. Whether they are
// mappable depends on whether the concrete IDs are broadcast or
// not. Note that a broadcast axis is used a concrete ID when it is
// part of an output tensor domain, i.e., when it never gets
// concretized with any non-broadcast axis.
// If there exists a pair of non-broadcast concrete IDs is not
// mappable, id_a and id_b can't be mapped together. Otherwise, they
// can be mapped when there is any mappable pair is found.
bool mappable_pair_found = false;
for (const auto& key_a : getConcretizedKeys(td_a, id_a)) {
for (const auto& key_b : getConcretizedKeys(td_b, id_b)) {
const bool mappable = canMap(key_a, key_b);
mappable_pair_found = mappable_pair_found || mappable;
// If both concrete IDs are not broadcast, they must be
// mappable. Also, if either of the concrete IDs is a reduction,
// that means a trivial reduction (i.e., broadcast immediately
// followed by reduction), which does not prevent any mapping.
if (!key_a.concreteId()->isBroadcast() &&
!key_b.concreteId()->isBroadcast() &&
!key_a.concreteId()->isReduction() &&
!key_b.concreteId()->isReduction() && !mappable) {
return false;
}
}
}
return mappable_pair_found;
}
bool ComputeAtRootDomainMap::canMap(
const DomainKey& key_a,
const TensorDomain* td_b,
const IterDomain* id_b) const {
TORCH_INTERNAL_ASSERT(
id_b->definition() == nullptr || id_b->isRFactorProduct(),
"Non-root domain is not supproted: ",
id_b);
if (!id_b->isBroadcast()) {
return canMap(key_a, DomainKey(td_b, id_b));
}
// If id_b is broadcast, look at all the concrete IDs that id_b may
// be concretized to. Whether it is mappable with key_a depends on
// whether key_a's concrete ID is also broadcast.
// 1) key_a's concrete ID is also broadcast: They are mappable when
// there is any mappable concrete ID exists in the concrete ID set
// of id_b.
// 2) key_a's concrete ID is not broadcast: Since key_a is indeed
// concrete, it must be mappable with any of concrete ID of id_b,
// except when a id_b concrete is broadcast.
const bool key_a_bcast =
key_a.concreteId() && key_a.concreteId()->isBroadcast();
const bool key_a_reduction =
(key_a.concreteId() && key_a.concreteId()->isReduction()) ||
key_a.id()->isReduction();
bool mappable_pair_found = false;
for (const auto& key_b : getConcretizedKeys(td_b, id_b)) {
const bool mappable = canMap(key_a, key_b);
mappable_pair_found = mappable_pair_found || mappable;
// If both concrete IDs are not broadcast, they must be mappable.
// However, if key_b's concrete ID is a reduction, the concrete ID
// is a result of a trivial reduction, so it should not prevent
// any other mapping. Similarly, if key_a is a reduction, it just
// needs to find any concrete ID of key_b that can be mapped.
if (!key_a_bcast && !key_b.concreteId()->isBroadcast() &&
!key_b.concreteId()->isReduction() && !key_a_reduction && !mappable) {
return false;
}
}
return mappable_pair_found;
}
bool ComputeAtRootDomainMap::canMap(
const DomainKey& key_a,
const DomainKey& key_b) const {
return key_a == key_b || eq_set_.permissiveAreMapped(key_a, key_b);
}
void ComputeAtRootDomainMap::setAlias(
const TensorDomain* td,
const TensorDomain* td_alias) {
auto tmp_bcast_map = bcast_map_;
for (const auto& kv : bcast_map_) {
const auto& bcast_map_key = kv.first;
const auto& bcast_concrete_id_set = kv.second;
if (bcast_map_key.td() == td) {
DomainKey alias_key(td_alias, bcast_map_key.id());
tmp_bcast_map.insert({alias_key, bcast_concrete_id_set});
}
}
bcast_map_ = tmp_bcast_map;
auto all_elements = eq_set_.getAllElements();
for (const auto& key : all_elements.vector()) {
if (key.td() == td) {
DomainKey alias_key(td_alias, key.id(), key.concreteId());
eq_set_.mapEntries(key, alias_key);
}
}
auto tmp_new_broadcast_domains = new_broadcast_domains_;
for (const auto& key : new_broadcast_domains_) {
if (key.td() == td) {
DomainKey alias_key(td_alias, key.id());
tmp_new_broadcast_domains.insert(alias_key);
}
}
new_broadcast_domains_ = tmp_new_broadcast_domains;
}
std::vector<DomainKey> ComputeAtRootDomainMap::getConcretizedKeys(
const TensorDomain* td,
const IterDomain* id) const {
DomainKey key(td, id);
auto it = bcast_map_.find(key);
TORCH_INTERNAL_ASSERT(it != bcast_map_.end(), "Not found: ", key.toString());
std::vector<DomainKey> domains;
std::transform(
it->second.begin(),
it->second.end(),
std::back_inserter(domains),
[&](const IterDomain* concrete_id) {
return DomainKey(td, id, concrete_id);
});
return domains;
}
std::unordered_set<const IterDomain*>& ComputeAtRootDomainMap::
getConcretizedDomains(const TensorDomain* td, const IterDomain* id) {
DomainKey key(td, id);
auto it = bcast_map_.find(key);
TORCH_INTERNAL_ASSERT(it != bcast_map_.end(), "Not found: ", key.toString());
return it->second;
}
std::unordered_map<IterDomain*, IterDomain*> ComputeAtRootDomainMap::
mapBestEffort(
const TensorDomain* from_td,
const std::vector<IterDomain*>& from_root,
const TensorDomain* to_td,
const std::vector<IterDomain*>& to_root) const {
std::unordered_map<IterDomain*, IterDomain*> id_map;
for (auto& from_id : from_root) {
for (const auto& to_id : to_root) {
if (canMap(from_td, from_id, to_td, to_id)) {
TORCH_INTERNAL_ASSERT(
id_map.insert({from_id, to_id}).second,
"Multiple matching ID detected for ",
from_id);
}
}
}
return id_map;
}
std::unordered_map<IterDomain*, IterDomain*> ComputeAtRootDomainMap::map(
const TensorDomain* producer,
const TensorDomain* consumer,
const std::unordered_set<IterDomain*>& root_dims_to_map,
bool producer_to_consumer) const {
const auto& producer_root =
TensorDomain::noReductions(producer->getMaybeRFactorDomain());
const auto& consumer_root = consumer->getRootDomain();
const TensorDomain* from_td = producer_to_consumer ? producer : consumer;
const TensorDomain* to_td = producer_to_consumer ? consumer : producer;
const auto& from_ids = producer_to_consumer ? producer_root : consumer_root;
const auto& to_ids = producer_to_consumer ? consumer_root : producer_root;
std::unordered_map<IterDomain*, IterDomain*> id_map =
mapBestEffort(from_td, from_ids, to_td, to_ids);
for (auto& from_id : from_ids) {
if (root_dims_to_map.find(from_id) == root_dims_to_map.end()) {
// Remove mapping if exists
id_map.erase(from_id);
continue;
}
if (id_map.find(from_id) != id_map.end()) {
continue;
}
// Matching ID not found. It's an error unless the following three cases:
// 1. from_id is a new broadcast of a consumer domain; or
// 2. from_id is a window axis of a consumer domain; or
// 3. from_id is a ViewAsScalar domain
// Note that reduction domains are removed from the producer root domain.
if (!producer_to_consumer &&
(new_broadcast_domains_.find(DomainKey(from_td, from_id)) !=
new_broadcast_domains_.end() ||
from_id->getIterType() == IterType::VectorComponent ||
(window_axes_.count(from_id) > 0))) {
continue;
}
TORCH_INTERNAL_ASSERT(
false,
"Mapping IterDomain ",
from_id,
" of ",
from_td,
" not possible as it would require recomputing the source tensor.",
" Producer root: ",
producer_root,
". Consumer root: ",
consumer_root,
". Mapping: ",
this->toString());
}
return id_map;
}
std::unordered_set<IterDomain*> ComputeAtRootDomainMap::getMappableDims(
const TensorDomain* producer,
const TensorDomain* consumer) const {
//! This funciton previously used mapBestEffort but it can fail when
//! a domain is mapped to multitple domains, which can happen with
//! views. Since we only need to find mappable domains, just
//! grab any domain that is mapped in a pairwise way.
const auto& producer_root = producer->getMaybeRFactorDomain();
const auto& consumer_root = consumer->getRootDomain();
std::unordered_set<IterDomain*> mappable_ids;
for (const auto& p_id : producer_root) {
for (const auto& c_id : consumer_root) {
if (canMap(producer, p_id, consumer, c_id)) {
mappable_ids.emplace(p_id);
mappable_ids.emplace(c_id);
}
}
}
return mappable_ids;
}
std::string ComputeAtRootDomainMap::toString() const {
return eq_set_.toString();
}
ComputeAtRootDomainMapBuilder::ComputeAtRootDomainMapBuilder(
ComputeAtRootDomainMap& root_map,
bool map_through_reduction)
: BackwardVisitor(false),
root_map_(root_map),
map_through_reduction_(map_through_reduction) {
Fusion* fusion = FusionGuard::getCurFusion();
TORCH_INTERNAL_ASSERT(fusion != nullptr);
traverseFrom(fusion, fusion->outputs(), false);
if (!pending_map_.empty()) {
std::stringstream ss;
ss << "pending map:\n";
for (auto& kv : pending_map_) {
ss << "\t" << kv.first.toString() << "\n";
for (auto& dk : kv.second) {
ss << "\t\t" << dk.toString() << "\n";
}
}
std::cerr << ss.str();
}
TORCH_INTERNAL_ASSERT(pending_map_.empty());
}
// Set concrete domains for broadcast domains that never get joined
// with a concrete domain. Just set its own domain as a concrete
// domain, which is not concrete but is sufficient for this analysis.
void ComputeAtRootDomainMapBuilder::initializeBcastMap(
const TensorView* tv,
const IterDomain* id) {
TORCH_INTERNAL_ASSERT(id->isBroadcast(), "Not a broadcast axis");
auto key = DomainKey(tv->domain(), id);
auto it = root_map_.bcast_map_.find(key);
if (it != root_map_.bcast_map_.end()) {
// already initialized.
return;
}
// This initialization should be only used for: 1) fusion output
// tensors, 2) outputs of multi-consumer expressions that are not
// fusion outputs, and 3) view outputs as broadcasts can be merged
// with non-broadcast domains, resulting in non-broadcast rfactor
// domains.
TORCH_INTERNAL_ASSERT(
tv->isFusionOutput() || tv->definition()->outputs().size() > 1 ||
tv->isDefinitionType(ExprType::ViewOp),
"Invalid tensor to initialize bcast map: t",
tv->name());
root_map_.bcast_map_.insert({key, {id}});
}
void ComputeAtRootDomainMapBuilder::addToPendingList(
const DomainKey& producer,
const DomainKey& consumer) {
auto it = ensureMapping(pending_map_, producer, {});
auto& consumer_set = it->second;
consumer_set.insert(consumer);
}
void ComputeAtRootDomainMapBuilder::setMapped(
const DomainKey& producer,
const DomainKey& consumer) {
root_map_.eq_set_.mapEntries(producer, consumer);
}
void ComputeAtRootDomainMapBuilder::setInvalid(
const DomainKey& key1,
const DomainKey& key2) {
invalid_mappings_.emplace_back(key1, key2);
}
bool ComputeAtRootDomainMapBuilder::isInvalid(
const DomainKeySet& domains) const {
// First, collect all invalid mappings for each of the keys in domains
DomainKeyMap<DomainKeySet> invalid_key_map;
for (const auto& key : domains) {
DomainKeySet invalid_keys;
for (const auto& invalid_pair : invalid_mappings_) {
if (root_map_.canMap(key, invalid_pair.first)) {
invalid_keys.insert(invalid_pair.second);
} else if (root_map_.canMap(key, invalid_pair.second)) {
invalid_keys.insert(invalid_pair.first);
}
}
invalid_key_map.emplace(key, invalid_keys);
}
// Next, check if any pair is invalid to map.
const auto num_keys = domains.size();
const std::vector<DomainKey> domains_vec({domains.begin(), domains.end()});
for (const auto i : c10::irange(num_keys)) {
const auto& key_i = domains_vec[i];
// If no invalid keys found for key_i, it can be skipped.
const auto invalid_key_map_it = invalid_key_map.find(key_i);
if (invalid_key_map_it == invalid_key_map.end()) {
continue;
}
// Set of keys that are invalid to be mapped with key_i.
const DomainKeySet& invalid_keys_for_i = invalid_key_map_it->second;
// If any other key in domains is identified mappable with any of
// the keys in this set, the mapping with key_i is invalid.
for (const auto j : c10::irange(i + 1, num_keys)) {
const auto& key_j = domains_vec[j];
if (std::any_of(
invalid_keys_for_i.begin(),
invalid_keys_for_i.end(),
[&](const auto& invalid_key_for_i) {
return root_map_.canMap(key_j, invalid_key_for_i);
})) {
return true;
}
}
}
return false;
}
void ComputeAtRootDomainMapBuilder::setMaybeMapped(
const TensorDomain* producer_td,
const IterDomain* producer_id,
const TensorDomain* consumer_td,
const IterDomain* consumer_id) {
const DomainKey producer_key(producer_td, producer_id);
const DomainKey consumer_key(consumer_td, consumer_id);
if (producer_id->isBroadcast()) {
ensureMapping(root_map_.bcast_map_, producer_key, {});
}
if (consumer_id->isBroadcast()) {
TORCH_INTERNAL_ASSERT(producer_id->isBroadcast());
// Get bcast_map_ entry for consumer_id
const auto consumer_bcast_domains =
root_map_.getConcretizedKeys(consumer_td, consumer_id);
auto& producer_domains =
root_map_.getConcretizedDomains(producer_td, producer_id);
// If consumer id is broadcasted, make sure to propagate its concrete_id(s)
// to producer
for (const auto& consumer_bcast_key : consumer_bcast_domains) {
const auto concrete_id = consumer_bcast_key.concreteId();
const DomainKey producer_bcast_key(producer_td, producer_id, concrete_id);
producer_domains.insert(concrete_id);
addToPendingList(producer_bcast_key, consumer_bcast_key);
}
} else {
TORCH_INTERNAL_ASSERT(
!consumer_id->isBroadcast(),
"No concrete domain found for a broadcast domain: ",
consumer_key.toString());
auto producer_concrete_key = producer_key;
if (producer_id->isBroadcast()) {
const auto concrete_id = consumer_id;
auto& producer_domains =
root_map_.getConcretizedDomains(producer_td, producer_id);
producer_concrete_key = DomainKey(producer_td, producer_id, concrete_id);
producer_domains.insert(concrete_id);
}
addToPendingList(producer_concrete_key, consumer_key);
}
}
void ComputeAtRootDomainMapBuilder::handle(Expr* e) {
// Avoid visiting expressions multiple times
if (visited_.find(e) != visited_.end()) {
return;
}
BackwardVisitor::handle(e);
visited_.insert(e);
}
void ComputeAtRootDomainMapBuilder::mapPointwiseOrReductionOp(Expr* e) {
if (e->output(0)->getValType() != ValType::TensorView) {
return;
}
// Broadcast is handled separately, so e should never be BroadcastOp.
TORCH_INTERNAL_ASSERT(e->getExprType() != ExprType::BroadcastOp);
TORCH_INTERNAL_ASSERT(e->outputs().size() >= 1);
const TensorView* out_tv = e->output(0)->as<TensorView>();
const TensorDomain* out_td = out_tv->domain();
const auto& out_root = out_td->getRootDomain();
// Record equalities from output to all the inputs
// ignores un-concretizable broadcasts
for (auto* in_tv : ir_utils::filterByType<TensorView>(e->inputs())) {
const TensorDomain* in_td = in_tv->domain();
std::vector<IterDomain*> in_root =
TensorDomain::noReductions(in_tv->getMaybeRFactorDomain());
TORCH_INTERNAL_ASSERT(
in_root.size() == out_root.size(),
"\nExpression: ",
e,
"\nInput root domain: ",
in_root,
"\nOutput root domain: ",
out_root);
for (const auto it : c10::irange(in_root.size())) {
if (e->outputs().size() > 1) {
TORCH_INTERNAL_ASSERT(
e->isA<WelfordOp>() || e->isA<GroupedReductionOp>(),
"Multi-output mapping assumes WelforddOp or GroupedReductionOp but, ",
e->getExprType().value(),
" is found");
for (auto o : e->outputs()) {
auto o_tv = o->as<TensorView>();
auto o_td = o_tv->domain();
auto o_root = o_td->getRootDomain();
setMaybeMapped(in_td, in_root[it], o_td, o_root[it]);
}
} else {
setMaybeMapped(in_td, in_root[it], out_td, out_root[it]);
}
}
}
}
void ComputeAtRootDomainMapBuilder::handle(BroadcastOp* op) {
const TensorDomain* in_td = op->in()->as<TensorView>()->domain();
const TensorDomain* out_td = op->out()->as<TensorView>()->domain();
const auto in_root =
TensorDomain::noReductions(in_td->getMaybeRFactorDomain());
const auto& out_root = out_td->getRootDomain();
const auto& bcast_dim_flags = op->getBroadcastDimFlags();
TORCH_INTERNAL_ASSERT(
out_root.size() == bcast_dim_flags.size(),
"dim flags: ",
bcast_dim_flags,
", out root: ",
out_root);
auto in_it = in_root.begin();
auto out_it = out_root.begin();
while (in_it != in_root.end() && out_it != out_root.end()) {
if (bcast_dim_flags.at(std::distance(out_root.begin(), out_it))) {
// new broadcast dim. No matching dimension in the input
// tensor.
root_map_.new_broadcast_domains_.insert(DomainKey(out_td, *out_it));
++out_it;
continue;
}
setMaybeMapped(in_td, *in_it, out_td, *out_it);
++in_it;
++out_it;
}
// At this point, the input domain should have been scanned
// entirely.
TORCH_INTERNAL_ASSERT(
in_it == in_root.end(),
"Unmatched domain detected: ",
*in_it,
" of ",
in_td);
// On the other hand, the output may still have some domains left,
// and they must be new broadcast domains.
for (; out_it != out_root.end(); ++out_it) {
TORCH_INTERNAL_ASSERT(
bcast_dim_flags.at(std::distance(out_root.begin(), out_it)),
"Unmatched domain detected: ",
*out_it,
" of ",
out_td);
root_map_.new_broadcast_domains_.insert(DomainKey(out_td, *out_it));
}
}
void ComputeAtRootDomainMapBuilder::handle(ViewAsScalar* op) {
const TensorView* out_tv = op->output(0)->as<TensorView>();
const TensorDomain* out_td = out_tv->domain();
const auto& out_root = out_td->getRootDomain();
const TensorView* in_tv = op->input(0)->as<TensorView>();
const TensorDomain* in_td = in_tv->domain();
std::vector<IterDomain*> in_root =
TensorDomain::noReductions(in_tv->getMaybeRFactorDomain());
TORCH_INTERNAL_ASSERT(
in_root.size() + 1 == out_root.size(),
"\nExpression: ",
op,
"\nInput root domain: ",
in_root,
"\nOutput root domain: ",
out_root);
auto in_it = in_root.begin();
auto out_it = out_root.begin();
while (in_it != in_root.end() && out_it != out_root.end()) {
setMaybeMapped(in_td, *in_it, out_td, *out_it);
++in_it;
++out_it;
}
TORCH_INTERNAL_ASSERT(
(*out_it)->isVectorComponent(),
"The last dim of ViewDtypeOp's output must be a ViewAsScalar");
}
void ComputeAtRootDomainMapBuilder::handle(TransposeOp* op) {
const TensorDomain* in_td = op->in()->as<TensorView>()->domain();
std::vector<IterDomain*> in_root =
TensorDomain::noReductions(in_td->getMaybeRFactorDomain());
const TensorDomain* out_td = op->out()->as<TensorView>()->domain();
const auto& out_root = out_td->getRootDomain();
TORCH_INTERNAL_ASSERT(in_root.size() == out_root.size());
const auto& new2old = op->new2old();
for (const auto it : c10::irange(out_root.size())) {
setMaybeMapped(in_td, in_root[new2old[it]], out_td, out_root[it]);
}
}
void ComputeAtRootDomainMapBuilder::handle(GatherOp* op) {
const TensorDomain* in_td = op->in()->as<TensorView>()->domain();
const TensorDomain* out_td = op->out()->as<TensorView>()->domain();
const auto in_root =
TensorDomain::noReductions(in_td->getMaybeRFactorDomain());
const auto& out_root = out_td->getRootDomain();
// Only maps the input root axes. Do not map the new window axes.
for (const auto it : c10::irange(in_root.size())) {
setMaybeMapped(in_td, in_root[it], out_td, out_root[it]);
}
// Keep track of window axes so that they can be skipped when
// mapping root domains
for (const auto it : c10::irange(in_root.size(), out_root.size())) {
root_map_.window_axes_.insert(out_root[it]);
}
}
void ComputeAtRootDomainMapBuilder::mapAllPendingMappings(
const DomainKey& key) {
auto it = pending_map_.find(key);
if (it == pending_map_.end()) {
return;
}
const auto& pending_set = it->second;
// All entries in key_set must be equivalent with each other.
TORCH_INTERNAL_ASSERT(pending_set.size() > 0);
bool consistent = safeToMap(pending_set);
for (const auto pending_key : pending_set) {
if (consistent) {
setMapped(key, pending_key);
} else {
setInvalid(key, pending_key);
}
}
// This entry should never be used again, so remove it.
pending_map_.erase(it);
}
void ComputeAtRootDomainMapBuilder::mapAllPendingMappings(
const TensorDomain* td,
IterDomain* id) {
if (id->isBroadcast()) {
for (const auto& key : root_map_.getConcretizedKeys(td, id)) {
mapAllPendingMappings(key);
}
} else {
mapAllPendingMappings(DomainKey(td, id));
}
}
void ComputeAtRootDomainMapBuilder::handle(RNGOp* rop) {
handle(rop->output(0)->as<TensorView>());
}
void ComputeAtRootDomainMapBuilder::handle(TensorView* tv) {
const TensorDomain* td = tv->domain();
const auto rfactor = TensorDomain::noReductions(td->getMaybeRFactorDomain());
for (auto id : rfactor) {
if (id->isBroadcast()) {
initializeBcastMap(tv, id);
}
mapAllPendingMappings(td, id);
}
// When tv has a rfactor domain, propagate the domain mappings from
// each of the rfactor axes to the dependent root axes.
if (td->hasViewLikeRFactor()) {
std::unordered_set<Val*> root_set(
{td->getRootDomain().begin(), td->getRootDomain().end()});
for (auto rf_id : rfactor) {
if (!rf_id->isRFactorProduct()) {
continue;
}
auto dep = DependencyCheck::getAllValsBetween(root_set, {rf_id});
for (auto id : ir_utils::filterByType<IterDomain>(dep)) {
if (root_set.find(id) == root_set.end() || rf_id == id) {
continue;
}
setMaybeMapped(td, id, td, rf_id);
}
}
// Once mappings for rfactor axes are propagated to root axes,
// aggregates them at each root axis
for (auto id : tv->getRootDomain()) {
if (id->isBroadcast()) {
// There can be broadcast domains that appear at root domains but
// are removed at rfactor domains as they are merged into
// non-reduction domains. Initialize the map for those broadcast
// domains.
initializeBcastMap(tv, id);
}
mapAllPendingMappings(td, id);
}
}
}
// Checks whether all consumers of a producer can be joined without
// introducing unsupported mappings, i.e., requiring recomputations.
bool ComputeAtRootDomainMapBuilder::safeToMap(const DomainKeySet& domains) {
if (domains.size() <= 1) {
return true;
}
// Can't map if reduction output domains would be mapped
if (incompatible_domains_.isReductionOutputMapped(domains, root_map_) &&
!map_through_reduction_) {
return false;
}
// Make sure mapping these domains won't cause any invalid mapping
if (isInvalid(domains)) {
return false;
}
return true;
}
namespace {
class ExactRootDomainMapBuilder : private IterVisitor {
public:
ExactRootDomainMapBuilder(
Fusion* fusion,
DisjointSets<const IterDomain*>& eq_sets)
: eq_sets_(eq_sets) {
traverseFrom(fusion, fusion->outputs());
}
private:
using IterVisitor::handle;
void handle(Expr* expr) final {
for (auto producer : ir_utils::filterByType<TensorView>(expr->inputs())) {
for (auto consumer :
ir_utils::filterByType<TensorView>(expr->outputs())) {
PairwiseRootDomainMap pwise_map(producer, consumer, true);
const auto mappings = pwise_map.mapProducerToConsumer(
producer->domain(), consumer->domain());
for (const auto& mapping : mappings) {
eq_sets_.mapEntries(mapping.first, mapping.second);
}
}
}
}
private:
DisjointSets<const IterDomain*>& eq_sets_;
};
} // namespace
ExactRootDomainMap::ExactRootDomainMap(Fusion* fusion) {
ExactRootDomainMapBuilder builder(fusion, eq_sets_);
}
bool ExactRootDomainMap::areMapped(
const IterDomain* id_a,
const IterDomain* id_b) const {
// With expand going into a view operation there can be an instance where an
// iteration root domain in the consumer resolves the broadcast from the
// producer, then immediately rfactors it. In this case the consumer root is
// not mapped exactly to any other domain, so it might no have an entry in
// eq_sets_. eq_sets_.strictAreMapped would throw in this case so just return
// false if a mapping doesn't exist.
if (!eq_sets_.mappingExists(id_a) || !eq_sets_.mappingExists(id_b)) {
return false;
}
return eq_sets_.strictAreMapped(id_a, id_b);
}
std::unordered_map<IterDomain*, IterDomain*> ExactRootDomainMap::map(
const TensorDomain* producer,
const TensorDomain* consumer,
const std::unordered_set<IterDomain*>& root_dims_to_map,
bool producer_to_consumer) const {
const auto& producer_root =
TensorDomain::noReductions(producer->getMaybeRFactorDomain());
const auto& consumer_root = consumer->getRootDomain();
const auto& from_ids = producer_to_consumer ? producer_root : consumer_root;
const auto& to_ids = producer_to_consumer ? consumer_root : producer_root;
std::unordered_map<IterDomain*, IterDomain*> id_map;
for (auto& from_id : from_ids) {
if (root_dims_to_map.find(from_id) == root_dims_to_map.end()) {
continue;
}
for (const auto& to_id : to_ids) {
if (areMapped(from_id, to_id)) {
TORCH_INTERNAL_ASSERT(
id_map.insert({from_id, to_id}).second,
"Multiple matching ID detected for ",
from_id);
}
}
}
return id_map;
}
std::string ExactRootDomainMap::toString() const {
return eq_sets_.toString();
}
} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch
|