File: root_domain_map.h

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (502 lines) | stat: -rw-r--r-- 17,606 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
#pragma once

#include <torch/csrc/jit/codegen/cuda/disjoint_set.h>
#include <torch/csrc/jit/codegen/cuda/ir_all_nodes.h>
#include <torch/csrc/jit/codegen/cuda/iter_visitor.h>
#include <torch/csrc/jit/codegen/cuda/utils.h>

#include <c10/macros/Export.h>

namespace torch {
namespace jit {
namespace fuser {
namespace cuda {

//! Generic interface for mapping root domains of a producer-consumer pair.
class TORCH_CUDA_CU_API RootDomainMap : public PolymorphicBase {
 public:
  //! Return a map from a producer TensorDomain to a consumer
  //! TensorDomain
  //!
  //! \param producer A producer TensorDomain
  //! \param consumer A consumer TensorDomain
  //! \param root_dims_to_map Maps only producer root domains in this set
  std::unordered_map<IterDomain*, IterDomain*> mapProducerToConsumer(
      const TensorDomain* producer,
      const TensorDomain* consumer,
      const std::unordered_set<IterDomain*>& root_dims_to_map) const;

  //! Return a map from a producer TensorDomain to a consumer
  //! TensorDomain
  //!
  //! \param producer A producer TensorDomain
  //! \param consumer A consumer TensorDomain
  std::unordered_map<IterDomain*, IterDomain*> mapProducerToConsumer(
      const TensorDomain* producer,
      const TensorDomain* consumer) const;

  //! Return a map from a consumer TensorDomain to a producer
  //! TensorDomain
  //!
  //! \param consumer A consumer TensorDomain
  //! \param producer A producer TensorDomain
  //! \param root_dims_to_map Maps only consumer root domains in this set
  std::unordered_map<IterDomain*, IterDomain*> mapConsumerToProducer(
      const TensorDomain* consumer,
      const TensorDomain* producer,
      const std::unordered_set<IterDomain*>& root_dims_to_map) const;

  //! Return a map from a consumer TensorDomain to a producer
  //! TensorDomain
  //!
  //! \param consumer A consumer TensorDomain
  //! \param producer A producer TensorDomain
  std::unordered_map<IterDomain*, IterDomain*> mapConsumerToProducer(
      const TensorDomain* consumer,
      const TensorDomain* producer) const;

 protected:
  //! Return a map between root IterDomains of a producer-consumer
  //! pair.
  //!
  //! \param producer A producer TensorDomain
  //! \param consumer A consumer TensorDomain
  //! \param root_dims_to_map Maps only from IterDomains in this set
  //! \param producer_to_consumer Maps from producer to consumer if true
  virtual std::unordered_map<IterDomain*, IterDomain*> map(
      const TensorDomain* producer,
      const TensorDomain* consumer,
      const std::unordered_set<IterDomain*>& root_dims_to_map,
      bool producer_to_consumer) const = 0;
};

//! Maps root domains of a producer-consumer pair. This class only
//! looks at the given pair of TensorViews and does not take into
//! consideration the constraints of the computeAt transformation,
//! i.e., unable to compute the same tensors multiple times. This
//! should not be used for transformations implementing computeAt, but
//! should be valid otherwise.
class TORCH_CUDA_CU_API PairwiseRootDomainMap : public RootDomainMap {
 public:
  //! \param producer The producer tensor of a producer-consumer pair.
  //! \param consumer The consumer tensor of a producer-consumer pair.
  explicit PairwiseRootDomainMap(
      const TensorView* producer,
      const TensorView* consumer,
      bool is_exact = false);

  const TensorView* producer() const {
    return producer_tv_;
  }

  const TensorView* consumer() const {
    return consumer_tv_;
  }

  std::string toString() const;

 protected:
  std::unordered_map<IterDomain*, IterDomain*> map(
      const TensorDomain* producer,
      const TensorDomain* consumer,
      const std::unordered_set<IterDomain*>& root_dims_to_map,
      bool producer_to_consumer) const override;

  std::unordered_map<IterDomain*, IterDomain*> mapTranspose(
      const TensorDomain* producer,
      const TensorDomain* consumer,
      const std::unordered_set<IterDomain*>& root_dims_to_map,
      bool producer_to_consumer) const;

 private:
  const TensorView* producer_tv_ = nullptr;
  const TensorView* consumer_tv_ = nullptr;
  //! If true, does not map broadcast IDs with non-broadcast IDs
  const bool is_exact_ = false;
};

//! Represents an iteration domain of a TensorDomain. Only used for
//! root domain mapping.
//!
//! Note that an IterDomain object may be reused
//! across multiple TensorDomains, but an IterDomain in a
//! TensorDomain may not be necessarily mappable to the same
//! IterDomain used in a different TensorDomain. Thus, for the purpose
//! of root domain mapping, an iteration domain needs to be identified
//! with an IterDomain and its TensorDomain.
class DomainKey {
 public:
  DomainKey() = default;
  DomainKey(
      const TensorDomain* td,
      const IterDomain* id,
      const IterDomain* concrete_id = nullptr)
      : td_(td), id_(id), concrete_id_(concrete_id) {}
  const TensorDomain* td() const {
    return td_;
  }
  const IterDomain* id() const {
    return id_;
  }
  const IterDomain* concreteId() const {
    return concrete_id_;
  }
  bool operator==(const DomainKey& other) const {
    return td() == other.td() && id() == other.id() &&
        concreteId() == other.concreteId();
  }
  bool operator!=(const DomainKey& other) const {
    return !(*this == other);
  }

  std::string toString() const;

 private:
  const TensorDomain* td_ = nullptr;
  const IterDomain* id_ = nullptr;
  const IterDomain* concrete_id_ = nullptr;
};

struct DomainKeyHash {
  std::size_t operator()(const DomainKey& key) const {
    return std::hash<const TensorDomain*>{}(key.td()) ^
        std::hash<const IterDomain*>{}(key.id());
  }
};

using DomainKeySet = std::unordered_set<DomainKey, DomainKeyHash>;

template <typename Mapped>
using DomainKeyMap = std::unordered_map<DomainKey, Mapped, DomainKeyHash>;

class ComputeAtRootDomainMap;

//! A helper class to find all DomainKeys that are consumers of
//! reduction outputs. Such consumer IterDomains may not be mapped to
//! the producer reduction domain since the corresponding reduction
//! loop must be closed before any of the consumers can appear.
class TORCH_CUDA_CU_API UnmappableReductionDomains : private IterVisitor {
 public:
  UnmappableReductionDomains();
  ~UnmappableReductionDomains() override = default;

  //! Returns true when mapping consumer domains would cause a
  //! reduction output domain to be mapped with a consumer domain of
  //! the redution. It needs to be avoided as computing consumers of
  //! reduction outputs within the corresponding reduction loop is not
  //! possible. This routine is used to build root domain mappings.
  bool isReductionOutputMapped(
      const DomainKeySet& consumer_domains,
      const ComputeAtRootDomainMap& root_map) const;

  std::string toString() const;

 private:
  using IterVisitor::handle;
  void handle(ReductionOp* op) override;
  void handle(GroupedReductionOp* op) override;
  void handle(WelfordOp* op) override;
  void handle(MmaOp* op) override;

  void handleReductionOutput(TensorView* out_tv);

 private:
  //! Map from Reduction output DomainKeys to consumer DomainKeys
  DomainKeyMap<DomainKeySet> reduction_domains_;
  //! Map from Reduction output DomainKeys to producer DomainKeys
  DomainKeyMap<DomainKeySet> reduction_domain_inputs_;
};

//! Models root-domain mappings for computeAt
//!
//! Two iteration domains are mapped when computeAt of one iteration
//! domain is possible at another iteration domain. Consider a simple
//! example:
//!    T2 [i0,i1] = T1[i2,i3] + T0[i4,i5]
//! This will create mappings between i0, i2 and i4.
//!
//! Note that with views, there can be multiple domains mapped with
//! the same domain. Thus, obtaining one-to-one maps can
//! fail. Currently, the only use of this class is getMappableDims,
//! which just grabs any domain that is mappable, which works no
//! matter view is used or not.
class TORCH_CUDA_CU_API ComputeAtRootDomainMap : public RootDomainMap {
  friend class ComputeAtRootDomainMapBuilder;

 public:
  //! Builds a mapping table by analyzing the current
  //! fusion. Overwrite a previous table if any.
  //!
  //! \param map_through_reduction If set
  //!   true, will disable UnmappableReductionDomains check.
  //!   This is only for re-using logic in detecting
  //!   normalization fusions, which deviates slightly from
  //!   intended use of this class. Should always be true
  //!   in compute_at use cases.
  void build(bool map_through_reduction = false);

  //! Returns if key(td_a, id_a) and key(td_b, id_b) are mapped to eachother
  //! (equivalent), or are the same key.
  //!
  //! \param td_a A TensorDomain
  //! \param id_a An IterDomain in td_a
  //! \param td_b Another TensorDomain
  //! \param id_b An IterDomain in td_b
  //! \returns Boolean representing if they are mapped
  bool canMap(
      const TensorDomain* td_a,
      const IterDomain* id_a,
      const TensorDomain* td_b,
      const IterDomain* id_b) const;

  //! Make a TensorDomain an alias of another TensorDomain
  //!
  //! This is for the computeAt transformation, where TensorViews are
  //! updated with new TensorDomains. Since they keep using the same
  //! root doamins, the root mapping remains valid but needs to
  //! reflect the use of new TensorDomains as aliases of the existing
  //! ones.
  //!
  //! \param td An existing TensorDomain
  //! \param td_alias An alias of td
  void setAlias(const TensorDomain* td, const TensorDomain* td_alias);

  //! Return a map between TensorDomains
  //!
  //! Unlike the other map functions, two TensorDomains do not need to
  //! be a producer-consumer pair. Since they may not be a
  //! producer-consumer pair, this function requires proper root
  //! domains, which may be root or rfactor domains. Also, no error
  //! check is done as we do not assume producer-consumer
  //! relationship.
  //!
  //! Note that an exception is thrown when a domain is found to be
  //! mapped to multiple domains, which can happen with views.
  //!
  //! \param from_td A TensorDomain from which a map is created
  //! \param from_root A root domain of from_td
  //! \param to_td A TensorDomain to which a map is created
  //! \param to_root A root domain of to_td
  std::unordered_map<IterDomain*, IterDomain*> mapBestEffort(
      const TensorDomain* from_td,
      const std::vector<IterDomain*>& from_root,
      const TensorDomain* to_td,
      const std::vector<IterDomain*>& to_root) const;

  // Returns an unordered set of all iter domains in producer and consumer that
  // can map to eachother
  std::unordered_set<IterDomain*> getMappableDims(
      const TensorDomain* producer,
      const TensorDomain* consumer) const;

 private:
  //! Returns if key_a and key(td_b, id_b) are mapped to eachother (equivalent),
  //! or are the same key.
  //!
  //! \param key_a A DomainKey
  //! \param td_b Another TensorDomain
  //! \param id_b An IterDomain in td_b
  //! \returns Boolean representing if they are mapped
  bool canMap(
      const DomainKey& key_a,
      const TensorDomain* td_b,
      const IterDomain* id_b) const;

  //! Returns if key_a and key_b are mapped to each other (equivalent), or are
  //! the same key. Returns false if two keys are not known to be mapped.
  bool canMap(const DomainKey& key_a, const DomainKey& key_b) const;

  //! Returns the set of (non-broadcast) DomainKeys that id in td is
  //! broadcasted to. Can result in more than one "concrete" DomainKey.
  std::vector<DomainKey> getConcretizedKeys(
      const TensorDomain* td,
      const IterDomain* id) const;

  //! Returns the set of (non-broadcast) iter domains that id in td is
  //! broadcasted to. Can result in more than one "concrete" iter domain.
  std::unordered_set<const IterDomain*>& getConcretizedDomains(
      const TensorDomain* td,
      const IterDomain* id);

  //! Return a map between root IterDomains of a producer-consumer
  //! pair.
  //!
  //! \param producer A producer TensorDomain
  //! \param consumer A consumer TensorDomain
  //! \param root_dims_to_map Maps only from IterDomains in this set
  //! \param producer_to_consumer Maps from producer to consumer if true
  std::unordered_map<IterDomain*, IterDomain*> map(
      const TensorDomain* producer,
      const TensorDomain* consumer,
      const std::unordered_set<IterDomain*>& root_dims_to_map,
      bool producer_to_consumer) const override;

  std::string toString() const;

 private:
  //! Disjoint set of all mapped <TD, ID> keys to determine axes equivalency
  DisjointSets<DomainKey, DomainKeyHash> eq_set_;

  //! All IterDomains in the mapping that are a broadcast ID
  DomainKeyMap<std::unordered_set<const IterDomain*>> bcast_map_;

  //! Broadcast iter domain that does not match dimensions in its produer,
  //! meaning it is a brand new domain in its TensorDomain.
  DomainKeySet new_broadcast_domains_;

  //! Keep track of window axes so that the map function can ignore them.
  std::unordered_set<IterDomain*> window_axes_;
};

//! Create a DisjointSets of root IterDomains by traversing the
//! current fusion entirely. IterDomains that can be mapped each
//! other with computeAt are grouped into the same subset in the
//! DisjointSets.
class TORCH_CUDA_CU_API ComputeAtRootDomainMapBuilder
    : private BackwardVisitor {
 public:
  explicit ComputeAtRootDomainMapBuilder(
      ComputeAtRootDomainMap& root_map,
      bool map_through_reduction = false);

 private:
  //! Initialize the bcast map for fusion outputs
  void initializeBcastMap(const TensorView* tv, const IterDomain* id);

  //! Set a pair of producer-consumer domain keys as mappable
  void setMapped(const DomainKey& producer, const DomainKey& consumer);

  //! Records two domains are invalid to map
  void setInvalid(const DomainKey& key1, const DomainKey& key2);

  //! Check if no pair of domains is invalid to map
  bool isInvalid(const DomainKeySet& domains) const;

  //! Track a pair of producer-consumer domains as potentially mappable. Inserts
  //! entries into pending_map_, but does not add anything into the root_map_
  //! (added when handle is called on a TensorView). Maybe mapped will, however,
  //! immediately propagate broadcast iter domains.
  void setMaybeMapped(
      const TensorDomain* producer_td,
      const IterDomain* producer_id,
      const TensorDomain* consumer_td,
      const IterDomain* consumer_id);

  void addToPendingList(const DomainKey& producer, const DomainKey& consumer);

  //! Map pointwise IterDomains from inputs of expressions to outputs.
  //! Do not map reduction IterDomains in inputs.
  void mapPointwiseOrReductionOp(Expr* e);

  using BackwardVisitor::handle;

  void handle(Expr* e) override;

  void handle(UnaryOp* uop) override {
    mapPointwiseOrReductionOp(uop);
  }

  void handle(BinaryOp* bop) override {
    mapPointwiseOrReductionOp(bop);
  }

  void handle(TernaryOp* top) override {
    mapPointwiseOrReductionOp(top);
  }

  void handle(RNGOp* top) override;

  void handle(ReductionOp* op) override {
    mapPointwiseOrReductionOp(op);
  }

  void handle(GroupedReductionOp* op) override {
    mapPointwiseOrReductionOp(op);
  }

  void handle(WelfordOp* wop) override {
    mapPointwiseOrReductionOp(wop);
  }

  void handle(LoadStoreOp* ldst) override {
    mapPointwiseOrReductionOp(ldst);
  }

  void handle(MmaOp* wop) override {
    mapPointwiseOrReductionOp(wop);
  }

  void handle(ShiftOp* op) override {
    mapPointwiseOrReductionOp(op);
  }

  void handle(ViewOp* op) override {
    mapPointwiseOrReductionOp(op);
  }

  void handle(ViewAsScalar* op) override;

  void handle(BroadcastOp* op) override;

  void handle(TransposeOp* op) override;

  void handle(ExpandOp* op) override {
    mapPointwiseOrReductionOp(op);
  }

  void handle(GatherOp* op) override;

  void handle(TensorView* tv) override;

  //! Maps all pending mappings.
  //! This is called for each of TensorViews in a backward traversal,
  //! recursively building mappings from the output tensors to the
  //! input tensors.
  void mapAllPendingMappings(const DomainKey& key);

  //! Maps all pending mappings for id of td. When id is a broadcast,
  //! mapping is done separately for each concrete domain.
  void mapAllPendingMappings(const TensorDomain* td, IterDomain* id);

  bool safeToMap(const DomainKeySet& domains);

 private:
  ComputeAtRootDomainMap& root_map_;
  //! Keep track of what we want to try and map
  DomainKeyMap<DomainKeySet> pending_map_;
  std::unordered_set<Expr*> visited_;
  //! Helper class to find invalid mappings due to reductions
  UnmappableReductionDomains incompatible_domains_;
  //! Running vector of domain pairs that are invalid to map
  std::vector<std::pair<DomainKey, DomainKey>> invalid_mappings_;

  //! Disable UnmappableReductions check, should
  //!  always be false for compute_at use cases
  bool map_through_reduction_ = false;
};

//! Maps root domains of an entire fusion. Does not map broadcast
//! domains with non-broadcast domains.
class TORCH_CUDA_CU_API ExactRootDomainMap : public RootDomainMap {
 public:
  ExactRootDomainMap(Fusion* fusion);

  bool areMapped(const IterDomain* id_a, const IterDomain* id_b) const;

  std::string toString() const;

 protected:
  std::unordered_map<IterDomain*, IterDomain*> map(
      const TensorDomain* producer,
      const TensorDomain* consumer,
      const std::unordered_set<IterDomain*>& root_dims_to_map,
      bool producer_to_consumer) const override;

 private:
  DisjointSets<const IterDomain*> eq_sets_;
};

} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch