File: grid_reduction.cu

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (620 lines) | stat: -rw-r--r-- 20,499 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
// Inter-block reduction.
//
// The gridReduce function performs point-wise reductions of scalars across
// thread blocks. Thread blocks are disjointly partitioned into groups,
// "reduction segments", that are collectively defined by boolean template
// parameters, X_BLOCK, Y_BLOCK and Z_BLOCK. Each of X/Y/Z_BLOCK determines
// whether thread blocks along the dimension should be grouped into the same
// reduction segment. Cross-block reducitons are independently done within each
// segment and generates distinctive results per segment. For instance, if all
// of X/Y/Z_BLOCK are true, reductions will be done across all thread blocks
// since there will be just a single segment consisting of all thread blocks. If
// none of them are true, each thread block will become a segment by itself, so
// no reduction will be performed.
//
// The input scalars to reduce within each segment are a certain subset of
// thread-private scalars provided as part of the gridReduce function
// parameters. Boolean template parameters, X_THREAD, Y_THREAD and Z_THREAD,
// determine which subset of the scalars should be used for inter-block
// reductions. Specifically, all the input scalars of threads along each
// dimension will be used when X/Y/Z_THREAD are true. Otherwise, only the value
// held at offset 0 of each dimension will be used. Thus, for example, if all of
// X/Y/Z_THREAD are true, the scalars of all threads in each block will
// participate in inter-block reductions. If all of them are false, only one
// scalar of the thread at threadIdx.x == threadIdx.y == threadIdx.z == 0 will
// be used. In the code below, we call the subset of threads a "reduction
// block". "Participating" thread dimensions here are similar to the
// "non-participating" block dimensions. They come from a block dimension that
// has not been reduced before hitting this grid reduction.
//
// Inter-block reductions perform point-wise reductions of scalars of reduction
// blocks within each reduction segment. More specifically, let rb be a
// reduction block and rs be a reduction segment. Let IN(thread_idx, block_idx)
// denote the input scalar of thread at thread_idx and block_idx. The result of
// each reduction segment, OUT(thread_idx, block_idx_out), is defined only for
// each thread_idx in thread block block_idx_out in the segment as follows:
//
//   OUT(thread_idx, block_idx_out) =
//     Reduction of IN(thread_idx, block_idx) for
//       all block_idx in a reduction segment
//
// OUT is not given for all threads that are not in block_idx_out and the
// reduction block.
//
// See also the function comment of gridReduce.

namespace reduction {

// Reduces all the reduction blocks in each reduction segment. This is the
// "cleanup" stage of a grid reduction.
//
// This is only called by one thread block per reduction segment. The input
// reduction blocks of the segment are stored in an intermediate buffer pointed
// by parameter in. Template parameters X/Y/Z_THREAD denote how the reduction
// block is formed.
//
// The size of a reduction block is by definition smaller or equal to the size
// of a thread block. We use the remaining threads to parallelize reductions
// across reduction blocks. For example, when X/Y/Z_THREAD = {true, false,
// false}, we use blockDim.y*blockDim.z threads for each output value. This is
// done first by loading the input values in parallel and then by reducing
// across threads of dimensions whose XYZ_THREAD are false.
//
// Note that what is done here after the loading from global memory is similar
// to what the existing blockReduce function does.
template <
    bool X_THREAD,
    bool Y_THREAD,
    bool Z_THREAD,
    typename T,
    typename Func>
__device__ void gridReduceLastBlock(
    T& out,
    const volatile T* in,
    const nvfuser_index_t
        grid_reduction_segment_size, // Number of reductions across
                                     // grid reduce dimensions
    const nvfuser_index_t
        block_reduction_segment_size, // Number of reductions across the block
    Func reduction_op,
    T* shared_buf,
    bool write_pred,
    T init_val) {
  // We have to do num_reductions across reduction_size. The reductions are
  // contiguous, but offset by reduction_size. There is an entry in "in" for
  // every block, and every thread marked as true. Threads in dimensions marked
  // as false can be used to parallelize the reduction.

  // Find the reduction id of the participating threads
  const auto block_reduction_segment_idx =
      index_utils::maskedOffset<X_THREAD, Y_THREAD, Z_THREAD>(
          threadIdx, blockDim);

  // Find an id associated within a reduction segment for all
  // "non-participating" threads, which will parallelize the reductions for the
  // "participating" threads
  const auto id_in_block_segment =
      index_utils::maskedOffset<!X_THREAD, !Y_THREAD, !Z_THREAD>(
          threadIdx, blockDim);

  // Stride by the "non-participating" threads
  const auto input_stride_for_thread_in_segment =
      index_utils::maskedSize<!X_THREAD, !Y_THREAD, !Z_THREAD>(blockDim);

  T inp = init_val;

  // Block stride across the reduction until we only have one value per thread
  for (nvfuser_index_t reduction_i = id_in_block_segment;
       reduction_i < grid_reduction_segment_size;
       reduction_i += input_stride_for_thread_in_segment) {
    auto work_buf_offset = reduction_i * block_reduction_segment_size +
        block_reduction_segment_idx;
    reduction_op(inp, in[work_buf_offset]);
  }

  // Block reduce the per thread values into per "participating" thread values
  T inp_tmp = init_val;
  blockReduce<!X_THREAD, !Y_THREAD, !Z_THREAD>(
      inp_tmp,
      inp,
      reduction_op,
      threadIdx,
      blockDim,
      shared_buf,
      true,
      init_val);
  const bool should_write = (X_THREAD || threadIdx.x == 0) &&
      (Y_THREAD || threadIdx.y == 0) && (Z_THREAD || threadIdx.z == 0);
  if (should_write && write_pred) {
    reduction_op(out, inp_tmp);
  }
}

// Reduces per-thread values across threads and thread blocks.
//
// Function parameters:
// - out: Per-thread output location
// - inp_val: Per-thread input value
// - reduction_op: Scalar reduction function
// - work_buf: Temporary buffer for cross-block reductions
// - sync_flags: A vector of integers for synchronizations
// - shared_buf: Shared memory buffer for intra-block reduction
//
// Thread has valid results based on if it's the last block in the grid
// reduction dimension
//
// Template parameters:
// - X/Y/Z_BLOCK/THREAD: When true, reduces across thread blocks along the X/Y/Z
//   dimensions
// - PERSISTENT_REDUCTION: Indicates grid reduction will be called in a loop, or
//   the result of the grid reduction will be broadcasted and used across the
//   grid. These requires cross grid communication and the grid synchronizations
//   here to actually synchronize across the entire grid. When false the grid is
//   not synchronized, the last block just waits for everyone else to finish and
//   the other blocks can exit early.
// - T: Scalar data type of input/output data
// - Func: Type of scalara reduction function
//
// Template parameters X/Y/Z_BLOCK define a group of thread blocks that are
// reduced together. We call it a reduction segment. Some examples are:
//
// Case 1: X/Y/Z_BLOCK == true/true/true -> There is only one segment, which
// includes all thread blocks. It is effecively the same as the grid.
//
// Case 2: X/Y/Z_BLOCK == false/false/false -> Each thread block comprises an
// individual segment by itself.
//
// Case 3: X/Y/Z_BLOCK == true/false/false -> Each segment contains thread
// blocks that have the same blockDim.x. There will be blockDim.y*blockDim.z
// such segments.
//
// X/Y/Z_THREAD also works similarly as X/Y/Z_BLOCK and defines a
// group of threads that are reduced togather.
//
// After the function completes, only one thread block per reduction segment
// gets valid reduction results. There is no guarantee which particular block
// gets the final results.
//
// entrance_ind and n_entrances are allowed when PERSISTENT_REDUCTION = false.
// If a grid reduction call is only called once per thread, entrance_ind == 0
// and n_entrances == 1. However, grid reduction can be called in a loop in a
// thread, in that case entrance_ind is the count of times the function has been
// called, and n_entrances is the total number of times it will be called.
template <
    bool X_BLOCK,
    bool Y_BLOCK,
    bool Z_BLOCK,
    bool X_THREAD,
    bool Y_THREAD,
    bool Z_THREAD,
    bool PERSISTENT_REDUCTION,
    typename T,
    typename Func>
__device__ void gridReduce(
    T& out,
    const T& inp_val,
    Func reduction_op,
    volatile T* work_buf,
    int64_t* sync_flags,
    T* shared_buf,
    bool read_pred,
    bool write_pred,
    T init_val,
    const nvfuser_index_t entrance_ind,
    const nvfuser_index_t n_entrances) {
  T block_reduction_val = init_val;

  // Do block reduction when required
  if (X_THREAD || Y_THREAD || Z_THREAD) {
    blockReduce<X_THREAD, Y_THREAD, Z_THREAD>(
        block_reduction_val,
        inp_val,
        reduction_op,
        threadIdx,
        blockDim,
        shared_buf,
        read_pred,
        true,
        init_val);
  } else if (read_pred) {
    block_reduction_val = inp_val;
  }

  // Number of values to reduce in the reduction segment
  const auto grid_reduction_segment_size =
      index_utils::maskedSize<X_BLOCK, Y_BLOCK, Z_BLOCK>(gridDim);

  // Index of the reduction we're performing out of the
  // grid_reduction_segment_size
  const auto idx_in_grid_segment =
      index_utils::maskedOffset<!X_BLOCK, !Y_BLOCK, !Z_BLOCK>(
          blockIdx, gridDim);

  // Number of threads we can use in final reduction, Seems to assume all
  // threads in the block participate
  const auto block_reduction_segment_size =
      index_utils::maskedSize<!X_THREAD, !Y_THREAD, !Z_THREAD>(blockDim);

  // Number of reductions in the grid
  const nvfuser_index_t grid_segment_size = PERSISTENT_REDUCTION
      ? 1
      : index_utils::maskedSize<!X_BLOCK, !Y_BLOCK, !Z_BLOCK>(gridDim);

  // advance to the offset for this segment
  // index of reduction * size of the reduction * size of threads
  work_buf += (entrance_ind * grid_segment_size + idx_in_grid_segment) *
      grid_reduction_segment_size * block_reduction_segment_size;

  if ((!X_THREAD || threadIdx.x == 0) && (!Y_THREAD || threadIdx.y == 0) &&
      (!Z_THREAD || threadIdx.z == 0)) {
    auto block_offset =
        index_utils::maskedOffset<X_BLOCK, Y_BLOCK, Z_BLOCK>(blockIdx, gridDim);
    auto thread_offset =
        index_utils::maskedOffset<!X_THREAD, !Y_THREAD, !Z_THREAD>(
            threadIdx, blockDim);
    auto work_buf_offset =
        block_offset * block_reduction_segment_size + thread_offset;
    work_buf[work_buf_offset] = block_reduction_val;
  }
  if (PERSISTENT_REDUCTION) {
    grid_sync::sync<X_BLOCK, Y_BLOCK, Z_BLOCK, PERSISTENT_REDUCTION>(
        sync_flags[idx_in_grid_segment], grid_reduction_segment_size);

  } else {
    // Use a different sync flag for each call
    grid_sync::sync<X_BLOCK, Y_BLOCK, Z_BLOCK, PERSISTENT_REDUCTION>(
        sync_flags[entrance_ind * grid_segment_size + idx_in_grid_segment],
        grid_reduction_segment_size);
  }

  bool last_block =
      index_utils::maskedIsLast<X_BLOCK, Y_BLOCK, Z_BLOCK>(blockIdx, gridDim);

  if (last_block) {
    // Cleanup with block reduction
    gridReduceLastBlock<!X_THREAD, !Y_THREAD, !Z_THREAD>(
        out,
        (T*)work_buf,
        grid_reduction_segment_size,
        block_reduction_segment_size,
        reduction_op,
        shared_buf,
        write_pred,
        init_val);
  }

  if (PERSISTENT_REDUCTION) {
    // Make sure we're done with global memory before we allow the kernel to
    // continue
    grid_sync::sync<X_BLOCK, Y_BLOCK, Z_BLOCK, PERSISTENT_REDUCTION>(
        sync_flags[idx_in_grid_segment], grid_reduction_segment_size);
  }
}

// This is just a wrapper of the above grid reduction routine to
// measure the elapsed cycles. The measurement must be done just by
// one thread, and in this case it should be done by one of the
// threads in the last thread block.
#ifdef PYTORCH_NVFUSER_PROFILE_KERNEL
template <
    bool X_BLOCK,
    bool Y_BLOCK,
    bool Z_BLOCK,
    bool X_THREAD,
    bool Y_THREAD,
    bool Z_THREAD,
    bool PERSISTENT_REDUCTION,
    typename T,
    typename Func>
__device__ void gridReduce(
    T& out,
    const T& inp_val,
    Func reduction_op,
    volatile T* work_buf,
    int64_t* sync_flags,
    T* shared_buf,
    bool read_pred,
    bool write_pred,
    T init_val,
    const nvfuser_index_t entrance_ind,
    const nvfuser_index_t n_entrances,
    int64_t& cycles,
    int64_t& count) {
  int64_t start_counter = 0;

  if (index_utils::maskedIsLast<true, true, true>(blockIdx, gridDim) &&
      index_utils::maskedIsZero<true, true, true>(threadIdx)) {
    start_counter = readCycleCounter();
  }

  gridReduce<
      X_BLOCK,
      Y_BLOCK,
      Z_BLOCK,
      X_THREAD,
      Y_THREAD,
      Z_THREAD,
      PERSISTENT_REDUCTION,
      T,
      Func>(
      out,
      inp_val,
      reduction_op,
      work_buf,
      sync_flags,
      shared_buf,
      read_pred,
      write_pred,
      init_val,
      entrance_ind,
      n_entrances);

  if (index_utils::maskedIsLast<true, true, true>(blockIdx, gridDim) &&
      index_utils::maskedIsZero<true, true, true>(threadIdx)) {
    cycles += readCycleCounter() - start_counter;
    ++count;
  }
}
#endif // PYTORCH_NVFUSER_PROFILE_KERNEL

template <
    bool X_BLOCK,
    bool Y_BLOCK,
    bool Z_BLOCK,
    bool X_THREAD,
    bool Y_THREAD,
    bool Z_THREAD,
    typename T,
    typename Func>
__device__ void gridReduce2PartialReduction(
    const T& inp_val,
    T init_val,
    Func reduction_op,
    volatile T* work_buf,
    T* shared_buf,
    bool read_pred,
    nvfuser_index_t grid_reduction_segment_size,
    nvfuser_index_t idx_in_grid_segment,
    nvfuser_index_t block_reduction_segment_size) {
  T block_reduction_val = init_val;

  // Do block reduction when required
  if (X_THREAD || Y_THREAD || Z_THREAD) {
    blockReduce<X_THREAD, Y_THREAD, Z_THREAD>(
        block_reduction_val,
        inp_val,
        reduction_op,
        threadIdx,
        blockDim,
        shared_buf,
        read_pred,
        true,
        init_val);
  } else if (read_pred) {
    block_reduction_val = inp_val;
  }

  if ((!X_THREAD || threadIdx.x == 0) && (!Y_THREAD || threadIdx.y == 0) &&
      (!Z_THREAD || threadIdx.z == 0)) {
    auto block_offset =
        index_utils::maskedOffset<X_BLOCK, Y_BLOCK, Z_BLOCK>(blockIdx, gridDim);
    auto thread_offset =
        index_utils::maskedOffset<!X_THREAD, !Y_THREAD, !Z_THREAD>(
            threadIdx, blockDim);
    auto work_buf_offset =
        block_offset * block_reduction_segment_size + thread_offset;
    work_buf[work_buf_offset] = block_reduction_val;
  }
}

// 2-way horizontally fused grid reduction
template <
    bool X_BLOCK,
    bool Y_BLOCK,
    bool Z_BLOCK,
    bool X_THREAD,
    bool Y_THREAD,
    bool Z_THREAD,
    bool PERSISTENT_REDUCTION,
    typename T1,
    typename Func1,
    typename T2,
    typename Func2>
__device__ void gridReduceGroup(
    T1& out1,
    const T1& inp_val1,
    T1 init_val1,
    Func1 reduction_op1,
    volatile T1* work_buf1,
    T2& out2,
    const T2& inp_val2,
    T2 init_val2,
    Func2 reduction_op2,
    volatile T2* work_buf2,
    int64_t* sync_flags,
    void* shared_buf,
    bool read_pred,
    bool write_pred,
    const nvfuser_index_t entrance_ind,
    const nvfuser_index_t n_entrances) {
  // Number of values to reduce in the reduction segment
  const auto grid_reduction_segment_size =
      index_utils::maskedSize<X_BLOCK, Y_BLOCK, Z_BLOCK>(gridDim);

  // Index of the reduction we're performing out of the
  // grid_reduction_segment_size
  const auto idx_in_grid_segment =
      index_utils::maskedOffset<!X_BLOCK, !Y_BLOCK, !Z_BLOCK>(
          blockIdx, gridDim);

  // Number of threads we can use in final reduction, Seems to assume all
  // threads in the block participate
  const auto block_reduction_segment_size =
      index_utils::maskedSize<!X_THREAD, !Y_THREAD, !Z_THREAD>(blockDim);

  // Number of reductions in the grid
  const nvfuser_index_t grid_segment_size = PERSISTENT_REDUCTION
      ? 1
      : index_utils::maskedSize<!X_BLOCK, !Y_BLOCK, !Z_BLOCK>(gridDim);

  // advance to the offset for this segment
  // index of reduction * size of the reduction * size of threads
  work_buf1 += (entrance_ind * grid_segment_size + idx_in_grid_segment) *
      grid_reduction_segment_size * block_reduction_segment_size;

  work_buf2 += (entrance_ind * grid_segment_size + idx_in_grid_segment) *
      grid_reduction_segment_size * block_reduction_segment_size;

  gridReduce2PartialReduction<
      X_BLOCK,
      Y_BLOCK,
      Z_BLOCK,
      X_THREAD,
      Y_THREAD,
      Z_THREAD>(
      inp_val1,
      init_val1,
      reduction_op1,
      work_buf1,
      (T1*)shared_buf,
      read_pred,
      grid_reduction_segment_size,
      idx_in_grid_segment,
      block_reduction_segment_size);

  gridReduce2PartialReduction<
      X_BLOCK,
      Y_BLOCK,
      Z_BLOCK,
      X_THREAD,
      Y_THREAD,
      Z_THREAD>(
      inp_val2,
      init_val2,
      reduction_op2,
      work_buf2,
      (T2*)shared_buf,
      read_pred,
      grid_reduction_segment_size,
      idx_in_grid_segment,
      block_reduction_segment_size);

  if (PERSISTENT_REDUCTION) {
    grid_sync::sync<X_BLOCK, Y_BLOCK, Z_BLOCK, PERSISTENT_REDUCTION>(
        sync_flags[idx_in_grid_segment], grid_reduction_segment_size);
  } else {
    grid_sync::sync<X_BLOCK, Y_BLOCK, Z_BLOCK, PERSISTENT_REDUCTION>(
        sync_flags[entrance_ind * grid_segment_size + idx_in_grid_segment],
        grid_reduction_segment_size);
  }

  bool last_block =
      index_utils::maskedIsLast<X_BLOCK, Y_BLOCK, Z_BLOCK>(blockIdx, gridDim);

  if (last_block) {
    // Cleanup with block reduction
    gridReduceLastBlock<!X_THREAD, !Y_THREAD, !Z_THREAD>(
        out1,
        work_buf1,
        grid_reduction_segment_size,
        block_reduction_segment_size,
        reduction_op1,
        (T1*)shared_buf,
        write_pred,
        init_val1);
    gridReduceLastBlock<!X_THREAD, !Y_THREAD, !Z_THREAD>(
        out2,
        work_buf2,
        grid_reduction_segment_size,
        block_reduction_segment_size,
        reduction_op2,
        (T2*)shared_buf,
        write_pred,
        init_val2);
  }

  if (PERSISTENT_REDUCTION) {
    // Make sure we're done with global memory before we allow the kernel to
    // continue
    grid_sync::sync<X_BLOCK, Y_BLOCK, Z_BLOCK, PERSISTENT_REDUCTION>(
        sync_flags[idx_in_grid_segment], grid_reduction_segment_size);
  }
}

#ifdef PYTORCH_NVFUSER_PROFILE_KERNEL
template <
    bool X_BLOCK,
    bool Y_BLOCK,
    bool Z_BLOCK,
    bool X_THREAD,
    bool Y_THREAD,
    bool Z_THREAD,
    bool PERSISTENT_REDUCTION,
    typename T1,
    typename Func1,
    typename T2,
    typename Func2>
__device__ void gridReduceGroup(
    T1& out1,
    const T1& inp_val1,
    T1 init_val1,
    Func1 reduction_op1,
    volatile T1* work_buf1,
    T2& out2,
    const T2& inp_val2,
    T2 init_val2,
    Func2 reduction_op2,
    volatile T2* work_buf2,
    int64_t* sync_flags,
    void* shared_buf,
    bool read_pred,
    bool write_pred,
    const nvfuser_index_t entrance_ind,
    const nvfuser_index_t n_entrances,
    int64_t& cycles,
    int64_t& count) {
  int64_t start_counter = 0;

  if (index_utils::maskedIsLast<true, true, true>(blockIdx, gridDim) &&
      index_utils::maskedIsZero<true, true, true>(threadIdx)) {
    start_counter = readCycleCounter();
  }

  gridReduceGroup<
      X_BLOCK,
      Y_BLOCK,
      Z_BLOCK,
      X_THREAD,
      Y_THREAD,
      Z_THREAD,
      PERSISTENT_REDUCTION,
      T1,
      Func1,
      T2,
      Func2>(
      out1,
      inp_val1,
      init_val1,
      reduction_op1,
      work_buf1,
      out2,
      inp_val2,
      init_val2,
      reduction_op2,
      work_buf2,
      sync_flags,
      shared_buf,
      read_pred,
      write_pred,
      entrance_ind,
      n_entrances);

  if (index_utils::maskedIsLast<true, true, true>(blockIdx, gridDim) &&
      index_utils::maskedIsZero<true, true, true>(threadIdx)) {
    cycles += readCycleCounter() - start_counter;
    ++count;
  }
}
#endif // PYTORCH_NVFUSER_PROFILE_KERNEL

} // namespace reduction