1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
|
#define NVFUSER_DEFINE_MAGIC_ZERO \
__shared__ int nvfuser_zero_s; \
if (threadIdx.x == 0) \
nvfuser_zero_s = 0; \
__syncthreads(); \
atomicMin(&nvfuser_zero_s, threadIdx.x); \
int nvfuser_zero = nvfuser_zero_s;
#define NVFUSER_UPDATE_MAGIC_ZERO \
do { \
nvfuser_zero <<= 1; \
} while (0);
__device__ constexpr int ceilDiv(int a, int b) {
return (a + b - 1) / b;
}
__device__ constexpr int64_t ceilDiv(int64_t a, int64_t b) {
return (a + b - 1) / b;
}
__device__ constexpr int64_t ceilDiv(int64_t a, int b) {
return ceilDiv(a, (int64_t)b);
}
__device__ constexpr int64_t ceilDiv(int a, int64_t b) {
return ceilDiv((int64_t)a, b);
}
__device__ constexpr double ceilDiv(double a, double b) {
return std::ceil(a / b);
}
__device__ constexpr double ceilDiv(double a, int64_t b) {
return std::ceil(a / b);
}
__device__ constexpr double ceilDiv(int64_t a, double b) {
return std::ceil(a / b);
}
// Monotonic and precise lerp is described here:
// https://math.stackexchange.com/a/1798323
__device__ double lerp(double start, double end, double weight) {
if (weight < 0.5) {
return start + weight * (end - start);
} else {
return end - (end - start) * (1.0 - weight);
}
}
__device__ float lerp(float start, float end, float weight) {
if (weight < 0.5f) {
return start + weight * (end - start);
} else {
return end - (end - start) * (1.0f - weight);
}
}
__device__ std::complex<double> lerp(
std::complex<double> start,
std::complex<double> end,
std::complex<double> weight) {
if (abs(weight) < 0.5) {
return start + weight * (end - start);
} else {
return end - (end - start) * (1.0 - weight);
}
}
__device__ std::complex<float> lerp(
std::complex<float> start,
std::complex<float> end,
std::complex<float> weight) {
if (abs(weight) < 0.5f) {
return start + weight * (end - start);
} else {
return end - (end - start) * (1.0f - weight);
}
}
__device__ float lerp(float start, float end, double weight) {
return lerp(start, end, static_cast<float>(weight));
}
__device__ constexpr int max(int a, int b) {
return a > b ? a : b;
}
__device__ constexpr int64_t max(int64_t a, int b) {
return a > (int64_t)b ? a : (int64_t)b;
}
__device__ constexpr int64_t max(int a, int64_t b) {
return (int64_t)a > b ? (int64_t)a : b;
}
__device__ constexpr int64_t max(int64_t a, int64_t b) {
return a > b ? a : b;
}
__device__ double fmax(double a, double b) {
// check and propagate NaN
if (a != a) {
return a;
} else if (b != b) {
return b;
} else {
return a > b ? a : b;
}
}
__device__ float fmax(float a, float b) {
// check and propagate NaN
if (a != a) {
return a;
} else if (b != b) {
return b;
} else {
return a > b ? a : b;
}
}
__device__ constexpr int min(int a, int b) {
return a > b ? b : a;
}
__device__ constexpr int64_t min(int64_t a, int b) {
return (int64_t)a > b ? b : (int64_t)a;
}
__device__ constexpr int64_t min(int a, int64_t b) {
return a > (int64_t)b ? (int64_t)b : a;
}
__device__ constexpr int64_t min(int64_t a, int64_t b) {
return a > b ? b : a;
}
__device__ double fmin(double a, double b) {
// check and propagate NaN
if (a != a) {
return a;
} else if (b != b) {
return b;
} else {
return a > b ? b : a;
}
}
__device__ float fmin(float a, float b) {
// check and propagate NaN
if (a != a) {
return a;
} else if (b != b) {
return b;
} else {
return a > b ? b : a;
}
}
__device__ constexpr int alignBufferSize(int buffer, int size) {
return (buffer + (size - 1)) & ~(size - 1);
}
__device__ double clamp(double x, double minv, double maxv) {
return fmin(fmax(x, minv), maxv);
}
__device__ float clamp(float x, double minv, double maxv) {
return fmin(fmax((double)x, minv), maxv);
}
__device__ int clamp(int x, int64_t minv, int64_t maxv) {
return min(max((int64_t)x, minv), maxv);
}
__device__ int64_t clamp(int64_t x, int64_t minv, int64_t maxv) {
return min(max(x, minv), maxv);
}
__device__ double frac(double x) {
return x - trunc(x);
}
__device__ float frac(float x) {
return x - trunc(x);
}
__device__ double reciprocal(double x) {
return 1 / x;
}
__device__ float reciprocal(float x) {
return 1 / x;
}
__device__ std::complex<double> reciprocal(std::complex<double> x) {
return 1.0 / x;
}
__device__ std::complex<float> reciprocal(std::complex<float> x) {
return 1.0f / x;
}
__device__ double relu(double x) {
return x <= 0 ? 0 : x;
}
__device__ float relu(float x) {
return x <= 0 ? 0 : x;
}
__device__ float relu(int64_t x) {
return x <= 0 ? 0 : x;
}
__device__ float relu(int x) {
return x <= 0 ? 0 : x;
}
__device__ double remainder(double a, double b) {
auto mod = ::fmod(a, b);
if ((mod != 0) && ((b < 0) != (mod < 0)))
mod += b;
return mod;
}
__device__ float remainder(float a, float b) {
auto mod = ::fmod(a, b);
if ((mod != 0) && ((b < 0) != (mod < 0)))
mod += b;
return mod;
}
__device__ double sigmoid(double x) {
return 1.0 / (1.0 + exp(-x));
}
__device__ float sigmoid(float x) {
return 1.0f / (1.0f + exp(-x));
}
__device__ std::complex<double> sigmoid(std::complex<double> x) {
return 1.0 / (1.0 + exp(-x));
}
__device__ std::complex<float> sigmoid(std::complex<float> x) {
return 1.0f / (1.0f + exp(-x));
}
__device__ double silu(double x) {
return x * sigmoid(x);
}
__device__ float silu(float x) {
return x * sigmoid(x);
}
__device__ double threshold(double x, double t, double v) {
return x <= t ? v : x;
}
__device__ float threshold(float x, double t, double v) {
return x <= t ? v : x;
}
__device__ std::complex<double> where(
bool c,
std::complex<double> a,
std::complex<double> b) {
return c ? a : b;
}
__device__ std::complex<float> where(
bool c,
std::complex<float> a,
std::complex<float> b) {
return c ? a : b;
}
__device__ int threshold(int x, int64_t t, int64_t v) {
return x <= t ? v : x;
}
__device__ int64_t threshold(int64_t x, int64_t t, int64_t v) {
return x <= t ? v : x;
}
__device__ double where(bool c, double a, double b) {
return c ? a : b;
}
__device__ float where(bool c, float a, float b) {
return c ? a : b;
}
__device__ int64_t where(bool c, int64_t a, int64_t b) {
return c ? a : b;
}
__device__ int where(bool c, int a, int b) {
return c ? a : b;
}
__device__ int64_t where(bool c, int64_t a, int b) {
return c ? a : b;
}
__device__ int64_t where(bool c, int a, int64_t b) {
return c ? a : b;
}
__device__ constexpr int64_t remainder(int64_t a, int64_t b) {
auto mod = a % b;
if ((mod != 0) && ((b < 0) != (mod < 0)))
mod += b;
return mod;
}
__device__ constexpr int remainder(int a, int b) {
auto mod = a % b;
if ((mod != 0) && ((b < 0) != (mod < 0)))
mod += b;
return mod;
}
__device__ constexpr int64_t fmod(int64_t a, int64_t b) {
return a % b;
}
__device__ constexpr int fmod(int a, int b) {
return a % b;
}
__device__ constexpr double fmod(double a, double b) {
return ::fmod(a, b);
}
__device__ constexpr float fmod(float a, float b) {
return ::fmod(a, b);
}
template <typename T>
__device__ T pow(T a, T b) {
if (b < 0) {
if (a == 1) {
return 1;
} else if (a == -1) {
auto negative = (-b) % static_cast<T>(2);
return negative ? -1 : 1;
} else {
return 0;
}
} else {
T result = 1;
while (b) {
if (b & 1) {
result *= a;
}
b /= 2;
a *= a;
}
return result;
}
}
template __device__ int pow<int>(int a, int b);
template __device__ int64_t pow<int64_t>(int64_t a, int64_t b);
template <>
__device__ float pow<float>(float a, float b) {
return ::pow(a, b);
}
template <>
__device__ double pow<double>(double a, double b) {
return ::pow(a, b);
}
__device__ float pow(float a, int b) {
return pow(a, (float)b);
}
__device__ double pow(double a, int b) {
return pow(a, (double)b);
}
__device__ float pow(float a, int64_t b) {
return pow(a, (float)b);
}
__device__ double pow(double a, int64_t b) {
return pow(a, (double)b);
}
int64_t pow(int64_t a, int b) {
return pow(a, (int64_t)b);
}
int64_t pow(int a, int64_t b) {
return pow((int64_t)a, b);
}
template <int size, int align = size>
struct alignas(align) TypelessData {
int8_t data[size];
template <typename T, std::enable_if_t<sizeof(T) == size, int> _ = 0>
TypelessData(T x) {
*reinterpret_cast<T*>(data) = x;
}
template <typename T, std::enable_if_t<sizeof(T) == size, int> _ = 0>
operator T() {
return *reinterpret_cast<T*>(data);
}
};
template <typename T>
TypelessData<sizeof(T), alignof(T)> erase_type(T x) {
return x;
}
template <typename T>
bool isfinite(T x) {
return ::isfinite(x);
}
template <typename T>
bool isfinite(std::complex<T> x) {
return ::isfinite(std::real(x)) && ::isfinite(std::imag(x));
}
template <typename T>
bool isinf(T x) {
return ::isinf(x);
}
template <typename T>
bool isinf(std::complex<T> x) {
return ::isinf(std::real(x)) || ::isinf(std::imag(x));
}
////////////////////////////////////////////////////////////
// TODO: the following overloads are only needed for CUDA //
// 10.2 Please remove when CUDA 10.2 support is dropped //
////////////////////////////////////////////////////////////
bool isinf(int64_t x) {
return false;
}
bool isinf(int x) {
return false;
}
bool isinf(short x) {
return false;
}
bool isinf(char x) {
return false;
}
bool isinf(unsigned char x) {
return false;
}
bool isinf(bool x) {
return false;
}
bool isfinite(int64_t x) {
return true;
}
bool isfinite(int x) {
return true;
}
bool isfinite(short x) {
return true;
}
bool isfinite(char x) {
return true;
}
bool isfinite(unsigned char x) {
return true;
}
bool isfinite(bool x) {
return true;
}
////////////////////////////////////////////////////////////
// End TODO //
////////////////////////////////////////////////////////////
template <typename T>
bool isnan(T x) {
return x != x;
}
template <typename T>
bool isneginf(T x) {
return x < 0 && isinf(x);
}
template <typename T>
bool isposinf(T x) {
return x > 0 && isinf(x);
}
template <typename T>
bool isreal(T x) {
return true;
}
template <typename T>
bool isreal(std::complex<T> x) {
return std::imag(x) == 0;
}
// Return the current value of the cycle counter
__device__ inline int64_t readCycleCounter() {
// Ensures preceding memory operations are completed. Doing this
// would make sense for measuring elapsed times enclosed with this
// function.
__threadfence();
return clock64();
}
__device__ float print_impl(const char* name, float value) {
printf(
"%s = %f @ threadIdx=(%d,%d,%d), blockIdx=(%d,%d,%d)\n",
name,
value,
(int)threadIdx.x,
(int)threadIdx.y,
(int)threadIdx.z,
(int)blockIdx.x,
(int)blockIdx.y,
(int)blockIdx.z);
return value;
}
__device__ double print_impl(const char* name, double value) {
printf(
"%s = %lf @ threadIdx=(%d,%d,%d), blockIdx=(%d,%d,%d)\n",
name,
value,
(int)threadIdx.x,
(int)threadIdx.y,
(int)threadIdx.z,
(int)blockIdx.x,
(int)blockIdx.y,
(int)blockIdx.z);
return value;
}
__device__ int print_impl(const char* name, int value) {
printf(
"%s = %d @ threadIdx=(%d,%d,%d), blockIdx=(%d,%d,%d)\n",
name,
value,
(int)threadIdx.x,
(int)threadIdx.y,
(int)threadIdx.z,
(int)blockIdx.x,
(int)blockIdx.y,
(int)blockIdx.z);
return value;
}
__device__ int64_t print_impl(const char* name, int64_t value) {
printf(
"%s = %ld @ threadIdx=(%d,%d,%d), blockIdx=(%d,%d,%d)\n",
name,
value,
(int)threadIdx.x,
(int)threadIdx.y,
(int)threadIdx.z,
(int)blockIdx.x,
(int)blockIdx.y,
(int)blockIdx.z);
return value;
}
__device__ bool print_impl(const char* name, bool value) {
printf(
"%s = %s @ threadIdx=(%d,%d,%d), blockIdx=(%d,%d,%d)\n",
name,
value ? "true" : "false",
(int)threadIdx.x,
(int)threadIdx.y,
(int)threadIdx.z,
(int)blockIdx.x,
(int)blockIdx.y,
(int)blockIdx.z);
return value;
}
__device__ __half print_impl(const char* name, __half value) {
printf(
"%s = %f @ threadIdx=(%d,%d,%d), blockIdx=(%d,%d,%d)\n",
name,
__half2float(value),
(int)threadIdx.x,
(int)threadIdx.y,
(int)threadIdx.z,
(int)blockIdx.x,
(int)blockIdx.y,
(int)blockIdx.z);
return value;
}
#if __CUDACC_VER_MAJOR__ >= 11
__device__ __bfloat print_impl(const char* name, __bfloat value) {
printf(
"%s = %f @ threadIdx=(%d,%d,%d), blockIdx=(%d,%d,%d)\n",
name,
__bfloat2float(value),
(int)threadIdx.x,
(int)threadIdx.y,
(int)threadIdx.z,
(int)blockIdx.x,
(int)blockIdx.y,
(int)blockIdx.z);
return value;
}
#endif
#define print(...) print_impl(#__VA_ARGS__, (__VA_ARGS__))
template <typename OutT, typename IndexT, typename InputT>
__device__ OutT arange(IndexT index, InputT start, InputT step) {
return start + step * index;
}
|