1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
|
// -----------------------------------------------------------------------------------------------
// Block Welford Primitives
// -----------------------------------------------------------------------------------------------
// Basic utility for welford update. Can be used to scan one value, or two merge
// two welford results
template <typename T, typename TN>
__inline__ __device__ void welfordCombine(
T& a_avg,
T& a_M2,
TN& a_N,
const T b_avg,
const T b_M2,
TN b_N) {
if (b_N == 0) {
return;
}
TN ab_N = a_N + b_N;
T b_N_div_ab_N = ((T)(nvfuser_index_t)(b_N)) / ((T)(nvfuser_index_t)(ab_N));
T delta = b_avg - a_avg;
a_avg += delta * b_N_div_ab_N;
a_M2 += b_M2 + delta * delta * ((T)(nvfuser_index_t)(a_N)) * b_N_div_ab_N;
a_N = ab_N;
}
// [Z,Y,X]_THREADS is the number of participating threads in the z, y, x
// dimension of the block.
template <
bool X_REDUCE,
bool Y_REDUCE,
bool Z_REDUCE,
typename T,
typename TN,
typename _dim3,
typename _dim3_2>
__inline__ __device__ void blockWelford(
T& out_avg,
T& out_M2,
TN& out_N,
const T& in_avg,
const T& in_M2,
const TN& in_N,
const _dim3& thread_idx,
const _dim3_2& block_dim,
T* shared_mem_avg,
T* shared_mem_M2,
TN* shared_mem_N,
bool read_pred,
bool write_pred,
T init_val) {
// If this thread will output a final result
bool should_write =
index_utils::maskedIsZero<X_REDUCE, Y_REDUCE, Z_REDUCE>(thread_idx);
// Size of the reduction segments
unsigned int reduction_size =
index_utils::maskedSize<X_REDUCE, Y_REDUCE, Z_REDUCE>(block_dim);
// Index into the reduction segment
unsigned int reduction_tid =
index_utils::maskedOffset<X_REDUCE, Y_REDUCE, Z_REDUCE>(
thread_idx, block_dim);
// Index of the reduction segment
unsigned int reduction_idx =
index_utils::maskedOffset<!X_REDUCE, !Y_REDUCE, !Z_REDUCE>(
thread_idx, block_dim);
// Offset into smem for the current thread
unsigned int smem_offset = reduction_idx * reduction_size + reduction_tid;
if (read_pred) {
shared_mem_avg[smem_offset] = in_avg;
shared_mem_M2[smem_offset] = in_M2;
shared_mem_N[smem_offset] = in_N;
} else {
shared_mem_avg[smem_offset] = init_val;
shared_mem_M2[smem_offset] = init_val;
shared_mem_N[smem_offset] = 0;
}
block_sync::sync();
// Reduce down to nearest power of 2:
int np2 = 1 << (31 - __clz(reduction_size));
if (reduction_tid < np2 && reduction_tid + np2 < reduction_size) {
welfordCombine(
shared_mem_avg[smem_offset],
shared_mem_M2[smem_offset],
shared_mem_N[smem_offset],
shared_mem_avg[smem_offset + np2],
shared_mem_M2[smem_offset + np2],
shared_mem_N[smem_offset + np2]);
}
block_sync::sync();
// loop peel the final iteration to save one syncthread for the end
for (int factor = np2 / 2; factor > 1; factor >>= 1) {
if (reduction_tid < factor) {
welfordCombine(
shared_mem_avg[smem_offset],
shared_mem_M2[smem_offset],
shared_mem_N[smem_offset],
shared_mem_avg[smem_offset + factor],
shared_mem_M2[smem_offset + factor],
shared_mem_N[smem_offset + factor]);
}
block_sync::sync();
}
if (should_write && write_pred) {
T res_avg = out_avg;
T res_M2 = out_M2;
TN res_N = out_N;
welfordCombine(
res_avg,
res_M2,
res_N,
shared_mem_avg[smem_offset],
shared_mem_M2[smem_offset],
shared_mem_N[smem_offset]);
if (reduction_size > 1) {
welfordCombine(
res_avg,
res_M2,
res_N,
shared_mem_avg[smem_offset + 1],
shared_mem_M2[smem_offset + 1],
shared_mem_N[smem_offset + 1]);
}
out_avg = res_avg;
out_M2 = res_M2;
out_N = res_N;
}
block_sync::sync();
}
// Use the same pred for both reads and writes
template <
bool X_REDUCE,
bool Y_REDUCE,
bool Z_REDUCE,
typename T,
typename TN,
typename _dim3,
typename _dim3_2>
__inline__ __device__ void blockWelford(
T& out_avg,
T& out_M2,
TN& out_N,
const T& in_avg,
const T& in_M2,
const TN& in_N,
const _dim3& thread_idx,
const _dim3_2& block_dim,
T* shared_mem_avg,
T* shared_mem_M2,
TN* shared_mem_N,
bool read_write_pred,
T init_val) {
blockWelford<X_REDUCE, Y_REDUCE, Z_REDUCE, T, TN, _dim3, _dim3_2>(
out_avg,
out_M2,
out_N,
in_avg,
in_M2,
in_N,
thread_idx,
block_dim,
shared_mem_avg,
shared_mem_M2,
shared_mem_N,
read_write_pred,
read_write_pred,
init_val);
}
// -----------------------------------------------------------------------------------------------
// Grid Welford Prototype
// -----------------------------------------------------------------------------------------------
namespace welford {
template <bool X_THREAD, bool Y_THREAD, bool Z_THREAD, typename T, typename TN>
__device__ void gridWelfordLastBlock(
T& out_avg,
T& out_M2,
TN& out_N,
const volatile T* in_avg,
const volatile T* in_M2,
const volatile TN* in_N,
const nvfuser_index_t
grid_reduction_segment_size, // Number of reductions across
// grid reduce dimensions
const nvfuser_index_t
block_reduction_segment_size, // Number of reductions across the block
T* shared_buf_avg,
T* shared_buf_M2,
TN* shared_buf_N,
bool write_pred,
T init_val) {
// We have to do num_reductions across reduction_size. The reductions are
// contiguous, but offset by reduction_size. There is an entry in "in" for
// every block, and every thread marked as true. Threads in dimensions marked
// as false can be used to parallelize the reduction.
// Find the reduction id of the participating threads
const auto block_reduction_segment_idx =
index_utils::maskedOffset<X_THREAD, Y_THREAD, Z_THREAD>(
threadIdx, blockDim);
// Find an id associated within a reduction segment for all
// "non-participating" threads, which will parallelize the reductions for the
// "participating" threads
const auto id_in_block_segment =
index_utils::maskedOffset<!X_THREAD, !Y_THREAD, !Z_THREAD>(
threadIdx, blockDim);
// Stride by the "non-participating" threads
const auto input_stride_for_thread_in_segment =
index_utils::maskedSize<!X_THREAD, !Y_THREAD, !Z_THREAD>(blockDim);
T inp_avg = init_val;
T inp_M2 = init_val;
TN inp_N = 0;
// Block stride across the reduction until we only have one value per thread
for (nvfuser_index_t reduction_i = id_in_block_segment;
reduction_i < grid_reduction_segment_size;
reduction_i += input_stride_for_thread_in_segment) {
auto work_buf_offset = reduction_i * block_reduction_segment_size +
block_reduction_segment_idx;
welfordCombine(
inp_avg,
inp_M2,
inp_N,
in_avg[work_buf_offset],
in_M2[work_buf_offset],
in_N[work_buf_offset]);
}
// Block reduce the per thread values into per "participating" thread values
T inp_avg_tmp = init_val;
T inp_M2_tmp = init_val;
TN inp_N_tmp = 0;
blockWelford<!X_THREAD, !Y_THREAD, !Z_THREAD>(
inp_avg_tmp,
inp_M2_tmp,
inp_N_tmp,
inp_avg,
inp_M2,
inp_N,
threadIdx,
blockDim,
shared_buf_avg,
shared_buf_M2,
shared_buf_N,
true,
init_val);
const bool should_write = (X_THREAD || threadIdx.x == 0) &&
(Y_THREAD || threadIdx.y == 0) && (Z_THREAD || threadIdx.z == 0);
if (should_write && write_pred) {
welfordCombine(out_avg, out_M2, out_N, inp_avg_tmp, inp_M2_tmp, inp_N_tmp);
}
}
// Grid welford combine. See GridReduction for more information
template <
bool X_BLOCK,
bool Y_BLOCK,
bool Z_BLOCK,
bool X_THREAD,
bool Y_THREAD,
bool Z_THREAD,
bool PERSISTENT_REDUCTION,
typename T,
typename TN>
__device__ void gridWelford(
T& out_avg,
T& out_M2,
TN& out_N,
const T& inp_avg,
const T& inp_M2,
const TN& inp_N,
volatile T* work_buf_avg,
volatile T* work_buf_M2,
volatile TN* work_buf_N,
Tensor<int64_t, 1> sync_flags,
T* shared_buf_avg,
T* shared_buf_M2,
TN* shared_buf_N,
bool read_pred,
bool write_pred,
T init_val,
const nvfuser_index_t entrance_ind,
const nvfuser_index_t n_entrances) {
// entrance index only matters for non-persistent re-entrant grid reductions.
const nvfuser_index_t entrance_ind_ = PERSISTENT_REDUCTION ? 0 : entrance_ind;
const nvfuser_index_t n_entrances_ = PERSISTENT_REDUCTION ? 1 : n_entrances;
// Number of values to reduce in the reduction segment
const auto grid_reduction_segment_size =
index_utils::maskedSize<X_BLOCK, Y_BLOCK, Z_BLOCK>(gridDim);
// Index of the reduction we're performing out of the
// grid_reduction_segment_size
const auto idx_in_grid_segment =
index_utils::maskedOffset<!X_BLOCK, !Y_BLOCK, !Z_BLOCK>(
blockIdx, gridDim);
// Number of threads we can use in final reduction, Seems to assume all
// threads in the block participate
const auto block_reduction_segment_size =
index_utils::maskedSize<X_THREAD, Y_THREAD, Z_THREAD>(blockDim);
// Number of reductions in the grid
const nvfuser_index_t grid_segment_size = PERSISTENT_REDUCTION
? 1
: index_utils::maskedSize<!X_BLOCK, !Y_BLOCK, !Z_BLOCK>(gridDim);
// advance to the offset for this segment
// index of reduction * size of the reduction * size of threads
work_buf_avg += (entrance_ind_ * grid_segment_size + idx_in_grid_segment) *
grid_reduction_segment_size * block_reduction_segment_size;
work_buf_M2 += (entrance_ind_ * grid_segment_size + idx_in_grid_segment) *
grid_reduction_segment_size * block_reduction_segment_size;
work_buf_N += (entrance_ind_ * grid_segment_size + idx_in_grid_segment) *
grid_reduction_segment_size * block_reduction_segment_size;
if ((X_THREAD || threadIdx.x == 0) && (Y_THREAD || threadIdx.y == 0) &&
(Z_THREAD || threadIdx.z == 0)) {
auto block_offset =
index_utils::maskedOffset<X_BLOCK, Y_BLOCK, Z_BLOCK>(blockIdx, gridDim);
auto thread_offset =
index_utils::maskedOffset<X_THREAD, Y_THREAD, Z_THREAD>(
threadIdx, blockDim);
auto work_buf_offset =
block_offset * block_reduction_segment_size + thread_offset;
if (read_pred) {
work_buf_avg[work_buf_offset] = inp_avg;
work_buf_M2[work_buf_offset] = inp_M2;
work_buf_N[work_buf_offset] = inp_N;
} else {
work_buf_avg[work_buf_offset] = init_val;
work_buf_M2[work_buf_offset] = init_val;
work_buf_N[work_buf_offset] = 0;
}
}
if (PERSISTENT_REDUCTION) {
grid_sync::sync<X_BLOCK, Y_BLOCK, Z_BLOCK, PERSISTENT_REDUCTION>(
sync_flags[idx_in_grid_segment], grid_reduction_segment_size);
} else {
// Use a different sync flag for each call
grid_sync::sync<X_BLOCK, Y_BLOCK, Z_BLOCK, PERSISTENT_REDUCTION>(
sync_flags[entrance_ind_ * grid_segment_size + idx_in_grid_segment],
grid_reduction_segment_size);
}
bool last_block =
index_utils::maskedIsLast<X_BLOCK, Y_BLOCK, Z_BLOCK>(blockIdx, gridDim);
if (last_block) {
// final reduction
gridWelfordLastBlock<X_THREAD, Y_THREAD, Z_THREAD>(
out_avg,
out_M2,
out_N,
work_buf_avg,
work_buf_M2,
work_buf_N,
grid_reduction_segment_size,
block_reduction_segment_size,
shared_buf_avg,
shared_buf_M2,
shared_buf_N,
write_pred,
init_val);
}
if (PERSISTENT_REDUCTION) {
// Make sure we're done with global memory before we allow the kernel to
// continue
grid_sync::sync<X_BLOCK, Y_BLOCK, Z_BLOCK, PERSISTENT_REDUCTION>(
sync_flags[idx_in_grid_segment], grid_reduction_segment_size);
}
}
} // namespace welford
|