1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
|
#include <torch/csrc/jit/codegen/cuda/expr_evaluator.h>
#include <torch/csrc/jit/codegen/cuda/ir_printer.h>
#include <torch/csrc/jit/codegen/cuda/lower_utils.h>
#include <torch/csrc/jit/codegen/cuda/root_domain_map.h>
#include <torch/csrc/jit/codegen/cuda/scheduler/mma_utils.h>
#include <torch/csrc/jit/codegen/cuda/scheduler/utils.h>
namespace torch {
namespace jit {
namespace fuser {
namespace cuda {
namespace mma_util {
namespace {
// Utility for mma dimension matching
enum class MmaDimension { M = 0, N, K };
// Preliminary checks to try to validate that leaf is
// a innermost dim of root of exactly the given size.
bool canValidateIsInnerDim(
IterDomain* root,
IterDomain* leaf,
int inner_dim_size) {
// Accept boundary case for Volta.
if (leaf == root && leaf->isBroadcast()) {
return true;
}
auto expr = leaf->definition();
ExpressionEvaluator const_eval(leaf->fusion());
auto maybe_leaf_size = const_eval.evaluate(leaf->extent());
if (!maybe_leaf_size.has_value()) {
return false;
}
if (maybe_leaf_size.value() != inner_dim_size) {
return false;
}
while (expr) {
if (auto split = dynamic_cast<Split*>(expr)) {
// Inner split only
if (leaf != split->inner()) {
return false;
}
// Const split only
auto maybe_factor = const_eval.evaluate(split->factor());
if (!maybe_factor.has_value()) {
return false;
}
int factor = maybe_factor->as<int64_t>();
if (factor < inner_dim_size) {
// This might be too restrictive. Would need more
// bookkeeping to relax.
return false;
}
leaf = split->in();
} else if (auto merge = dynamic_cast<Merge*>(expr)) {
// Might consider just rejecting merge.
auto outer = merge->outer();
if (outer->isBroadcast()) {
return false;
}
// Only support merging with constant sized dims
maybe_leaf_size = const_eval.evaluate(leaf->extent());
if (!maybe_leaf_size.has_value()) {
return false;
}
if (maybe_leaf_size->as<int64_t>() != inner_dim_size) {
return false;
}
leaf = merge->inner();
} else {
// No support for swizzled inner dim for now.
// Might need to add transpose swizzle here.
return false;
}
expr = leaf->definition();
}
return leaf == root;
}
} // namespace
void checkDimSize(
TensorView* tv,
std::vector<int> axis,
std::vector<int> expect) {
TORCH_INTERNAL_ASSERT(
axis.size() == expect.size(),
"CheckDimSize: Mismatched axis and expect size");
ExpressionEvaluator const_eval(tv->fusion());
for (auto axis_index : c10::irange(axis.size())) {
TORCH_INTERNAL_ASSERT(
((axis[axis_index] + static_cast<int>(tv->nDims())) >= 0) &&
(axis[axis_index] < (int)tv->nDims()),
"CheckDimSize: axis position out of bound ",
axis[axis_index],
" ",
tv->nDims());
auto id = tv->axis(axis[axis_index]);
auto maybe_extent = const_eval.evaluate(id->extent());
TORCH_CHECK(
maybe_extent.has_value(),
"Mma warp mapping: instruction tile has to be constant");
TORCH_CHECK(
maybe_extent.value() == expect[axis_index],
"Mma warp mapping: unexpected tile size at",
axis_index,
":",
maybe_extent.value(),
"vs",
expect[axis_index]);
}
}
void WarpMmaSwizzler::scheduleMmaWarpOutput(
TensorView* tv,
MmaOptions options) {
auto macro = options.macro;
switch (macro) {
case MmaOptions::MacroType::Volta_16_16_4:
scheduleVoltaM16N16K4Fp32Output(tv, options);
if (tv->definition()->isA<MmaOp>()) {
setWarpMapped(tv, 5);
}
break;
case MmaOptions::MacroType::Turing_16_8_16:
case MmaOptions::MacroType::Ampere_16_8_16:
scheduleTuringM16N8K16MmaWarpOutput(tv, options);
if (tv->definition()->isA<MmaOp>()) {
setWarpMapped(tv, 4);
}
break;
case MmaOptions::MacroType::Turing_16_16_16:
case MmaOptions::MacroType::Ampere_16_16_16:
scheduleTuringM16N16K16MmaWarpOutput(tv, options);
if (tv->definition()->isA<MmaOp>()) {
setWarpMapped(tv, 4);
}
break;
default:
TORCH_CHECK(
false, "scheduleMmaWarp: unsupported mma option ", toString(macro));
break;
}
}
void WarpMmaSwizzler::scheduleOperandRead(TensorView* tv, MmaOptions options) {
// Schedules operand for inner most 3 contiguous dimensions
// Assumes M, N, K
switch (options.macro) {
case MmaOptions::MacroType::Volta_16_16_4:
scheduleVoltaOperandRead(tv, options);
break;
case MmaOptions::MacroType::Turing_16_8_16:
case MmaOptions::MacroType::Ampere_16_8_16:
case MmaOptions::MacroType::Turing_16_16_16:
case MmaOptions::MacroType::Ampere_16_16_16:
scheduleTuringOperandRead(tv, options);
break;
default:
TORCH_CHECK(false, "WarpMmaSwizzler: please specify macro");
break;
}
}
void WarpMmaSwizzler::setWarpMapped(TensorView* tv, int number_of_dims) {
for (int id : c10::irange(number_of_dims)) {
tv->axis(-id - 1)->toMmaSwizzled();
}
}
namespace {
// Utility function for mma domain mapping:
// returns the Iterdomain from the accumulator tv that corresponds
// to the given mma dimension. See [MMA dimension matching].
std::vector<IterDomain*> getMmaDomains(MmaOp* mma, MmaDimension dimension) {
// This utility is user facing so shouldn't ever see tensor index here.
// Note: [Use Root Domain in Accumulator TV]
// Have to use root domain for accumulator tv since the operands do not have
// root/rfactor domains that map to the rfactor domain of output.
// For example:
// C[I,I,R,R] = mma (A[I,B,I,I], B[B,I,I,I]),
// if we do
// c->split(-1,4);
// c->rfactor(-1);
// on the mma stage we get:
// C[I,I,R,Io,R(4)] = mma (A[I,B,I,I], B[B,I,I,I]),
// and in this case Io and R(4) would not be able to find root mapping
// in A or B.
//
// Essentially in the case of rfactor, this utility does producer side
// matching so looking at root domain would be required.
// This matching pattern should support most common matmul applications,
// but in follow ups we may need to extend RFactor matching if there
// are more complex scheduling patterns that we want to support.
auto accumulator_domain = mma->out()->as<TensorView>()->getRootDomain();
auto a_domain = TensorDomain::noReductions(
mma->inA()->as<TensorView>()->getMaybeRFactorDomain());
auto b_domain = TensorDomain::noReductions(
mma->inB()->as<TensorView>()->getMaybeRFactorDomain());
TORCH_CHECK(
a_domain.size() == b_domain.size() &&
a_domain.size() == accumulator_domain.size(),
"Inconsisitent dimensions in mma op",
a_domain.size(),
" ",
b_domain.size(),
" ",
accumulator_domain.size());
std::vector<IterDomain*> result;
for (int id_idx : c10::irange(a_domain.size())) {
// checks if this id should be included in the result
bool include_this_id = false;
bool is_broadcast_in_a = a_domain[id_idx]->isBroadcast();
bool is_broadcast_in_b = b_domain[id_idx]->isBroadcast();
bool is_reduction_id = accumulator_domain[id_idx]->isReduction();
switch (dimension) {
case MmaDimension::K:
// K dimension is the dimension that is concrete in
// operands, and is reduced by mma. This complies with
// tensor contraction definition.
include_this_id =
!is_broadcast_in_a && !is_broadcast_in_b && is_reduction_id;
break;
// M and N dimension below are defined as the iterdomains
// that are not reduced by mma, and are concretized in this stage.
case MmaDimension::M:
include_this_id =
!is_broadcast_in_a && is_broadcast_in_b && !is_reduction_id;
break;
case MmaDimension::N:
include_this_id =
is_broadcast_in_a && !is_broadcast_in_b && !is_reduction_id;
break;
default:
TORCH_INTERNAL_ASSERT(false, "unreachable");
}
if (include_this_id) {
result.push_back(accumulator_domain.at(id_idx));
}
}
return result;
}
//! Variant of getMmaDomains that returns a set
std::unordered_set<IterDomain*> getMmaDomainSet(
MmaOp* mma,
MmaDimension dimension) {
auto mma_domains = getMmaDomains(mma, dimension);
return {mma_domains.begin(), mma_domains.end()};
}
// [MMA dimension matching]
// Returns all the axes that correspond to the given mma dimension. This is the
// first relaxation step on the mma check.
// Mma operations concerns 3 dimensions, namely, the M, N,
// and K dimension, more details see [Operand Layout Convention] in mma_type.h.
// The current implementation, for best effort safety, supports the patterns
// where the root axes can be classified into one of the 3 dimension types.
// This is a helpful initial step into defining tensor contraction
// optimizations.
//
// A concrete example:
// T0 [I0, I1, I2, I3, I4, I5] = mma(T1[I01, B11, B21, I31, I41, B51], T2[B02,
// I12, B22, I32, I42, I52], {3};
// In this case some example querries:
// K dimension of T0 = {I3}
// M dimension of T1 = {I01}
// N dimension of T2 = {I52}
// etc.
std::vector<IterDomain*> getMmaRootDimensions(
TensorView* tv,
MmaOp* mma,
MmaDimension dimension) {
// Build a fusion-level root domain map
// so we can use the mma swizzles on non-immediate tensor operands, for
// example loadstore staging ops.
ComputeAtRootDomainMap root_map;
root_map.build();
// FIXME:
// Several optimization is possible at this stage but assuming we don't have
// a lot of mma ops in a fusion this could be lower priority.
// First it'd be nice not having to build root map every time this function
// is called. That'd require some explicit boundary where we "lock" the
// compute in the fusion so the root map stays valid.
// Second it'd reduce complexity of the below matching by an order if we have
// something similar to "disjointSetOf" in idGraph, for just the root domains
// at scheduler composing time.
auto mma_root_dimensions = getMmaDomains(mma, dimension);
auto mma_accumulator_tv = mma->out()->as<TensorView>();
std::vector<IterDomain*> result;
// Need to use root domain for accumulator tv and maybe rfactor domain
// otherwise. See [Use Root Domain in Accumulator TV].
auto is_mma_output =
tv->definition() != nullptr && tv->definition()->isA<MmaOp>();
const auto& tv_root_domain =
is_mma_output ? tv->getRootDomain() : tv->getMaybeRFactorDomain();
// Loop through tensorview's root domains and accumulate all the
// root domain IterDomain's that maps to any of the collected
// mma root dimension from the mma accumulator tv.
for (auto tv_id : tv_root_domain) {
if (std::any_of(
mma_root_dimensions.begin(),
mma_root_dimensions.end(),
[&](IterDomain* mma_id) {
return root_map.canMap(
tv->domain(), tv_id, mma_accumulator_tv->domain(), mma_id);
})) {
result.push_back(tv_id);
}
}
return result;
}
//! Utility function to help check that the innermost 3 iterdomains
//! are also the corresponding innermost {m,n,k} dimensions of
//! the root id's that are participating in the mma operation.
//! This is a format check before the warp mma swizzler applies mma
//! swizzles to make sure that the swizzler is applying the right
//! swizzles to the right axes.
//! This check will be relaxed as we build out the mma usage patterns.
void validateMmaRootInnerMNK(
TensorView* tv,
MmaOptions options,
int m,
int n,
int k) {
auto mma = options.mmaOp();
auto m_dims = getMmaRootDimensions(tv, mma, MmaDimension::M);
auto n_dims = getMmaRootDimensions(tv, mma, MmaDimension::N);
auto k_dims = getMmaRootDimensions(tv, mma, MmaDimension::K);
TORCH_CHECK(
!m_dims.empty() && !n_dims.empty() && !k_dims.empty(),
"validateMmaRootInnerMNK: MMA Axes incomplete");
// Still check the innermost dims of each at the current state:
TORCH_INTERNAL_ASSERT(tv->nDims() >= 3);
TORCH_INTERNAL_ASSERT(
canValidateIsInnerDim(m_dims.back(), tv->axis(-3), m),
"MMA swizzle: requires instruction tile iterdomains on the innermost side of the tensordomain");
TORCH_INTERNAL_ASSERT(
canValidateIsInnerDim(n_dims.back(), tv->axis(-2), n),
"MMA swizzle: requires instruction tile iterdomains on the innermost side of the tensordomain");
TORCH_INTERNAL_ASSERT(
canValidateIsInnerDim(k_dims.back(), tv->axis(-1), k),
"MMA swizzle: requires instruction tile iterdomains on the innermost side of the tensordomain");
}
//! Utility function to help check that the innermost 3 iterdomains
//! are also the corresponding innermost {m,n} dimensions of
//! the root id's that are participating in the mma operation.
//! This is a format check before the warp mma swizzler applies mma
//! swizzles to make sure that the swizzler is applying the right
//! swizzles to the right axes.
//! This check will be relaxed as we build out the mma usage patterns.
void validateMmaRootInnerMN(TensorView* tv, MmaOptions options, int m, int n) {
auto mma = options.mmaOp();
auto m_dims = getMmaRootDimensions(tv, mma, MmaDimension::M);
auto n_dims = getMmaRootDimensions(tv, mma, MmaDimension::N);
TORCH_CHECK(
!m_dims.empty() && !n_dims.empty(),
"validateMmaRootInnerMNK: MMA Axes incomplete");
// Still check the innermost dims of each at the current state:
TORCH_INTERNAL_ASSERT(tv->nDims() >= 2);
TORCH_INTERNAL_ASSERT(
canValidateIsInnerDim(m_dims.back(), tv->axis(-2), m),
"MMA swizzle: requires instruction tile iterdomains on the innermost side of the tensordomain");
TORCH_INTERNAL_ASSERT(
canValidateIsInnerDim(n_dims.back(), tv->axis(-1), n),
"MMA swizzle: requires instruction tile iterdomains on the innermost side of the tensordomain");
}
//! Performs checks on tv given to schedule ld matrix.
//! Currently only allowed ones are either:
//! 1. direct output of an ldmatrix op or
//! 2. direct output of a broadcast op following a ldmatrix op
//! Returns true if the tv is an immediate output of ldmatrix op
//!
//! TODO: this check is a WAR with pattern matching for now.
//! The two patterns mentioned above are the only supported use
//! cases of ldmatrix currently. This restriction can be greatly
//! relaxed after the iterdomain swizzle infrastructure, which
//! will provide the capability to directly model the exact
//! data format of ldmatrix output.
bool checkLdMatrixTv(TensorView* tv) {
// First check if tv is an ldmatrix output:
auto tv_def = tv->definition();
TORCH_CHECK(tv_def != nullptr, "ldmatrix : invalid tv");
bool is_immediate_output = true;
if (!ir_utils::isLdMatrixOp(tv_def)) {
// Only allow one broadcast in between tv and the ldmatrix op
TORCH_CHECK(
tv_def->isA<BroadcastOp>(),
"ldmatrix: only allow serial broadcast between ldmatrix and mma");
tv_def = tv_def->input(0)->definition();
TORCH_CHECK(tv_def != nullptr, "ldmatrix : invalid tv");
is_immediate_output = false;
}
TORCH_CHECK(ir_utils::isLdMatrixOp(tv_def), "ldmatrix : invalid op type");
TORCH_CHECK(
tv->nDims() > 2,
"ldmatrix: scheduled tv needs to be more than 2 dimensional");
TORCH_CHECK(
!tv->axis(-1)->isBroadcast(), "ldmatrix: unsupported scheduled axes");
TORCH_CHECK(
!tv->axis(-1)->isReduction(), "ldmatrix: unsupported scheduled axes");
TORCH_CHECK(
!tv->axis(-2)->isBroadcast(), "ldmatrix: unsupported scheduled axes");
TORCH_CHECK(
!tv->axis(-2)->isReduction(), "ldmatrix: unsupported scheduled axes");
return is_immediate_output;
}
void scheduleVoltaA(TensorView* tv, MmaOptions options) {
// Assumed:
// [..., 16, 16 ,4]
// [..., M, BN, K]
// Some validation:
validateMmaRootInnerMNK(tv, options, 16, 16, 4);
bool transposed = isOperandTransposed(options);
tv->split(-3, 4);
// Split out 16 from the bcast
tv->split(-2, 16);
tv->split(-2, 8);
// -6 -5 -4 -3 -2 -1
//[Mo4, Mi4, Noo, No2, Ni8, K]
if (transposed) {
tv->reorder({{-5, -3}, {-3, -5}});
// -6 -5 -4 -3 -2 -1
//[Mo4, No2, Noo, Mi4, Ni8, K]
} else {
tv->reorder({{-5, -1}, {-3, -5}, {-1, -3}});
// -6 -5 -4 -3 -2 -1
//[Mo4, No2, Noo, K, Ni8, Mi4]
}
tv->merge(-6);
tv->merge(-5);
tv->merge(-4);
//[Warp, Ni8, K/Mi4]
tv->axis(-3)->parallelize(ParallelType::TIDx);
}
void scheduleVoltaB(TensorView* tv, MmaOptions options) {
// Assumed:
// [..., 16,16,4]
// [..., BM, N, K]
// Some validation:
validateMmaRootInnerMNK(tv, options, 16, 16, 4);
bool transposed = isOperandTransposed(options);
tv->split(-3, 16);
tv->split(-3, 8);
tv->split(-2, 8);
tv->split(-2, 4);
// -7 -6 -5 -4 -3 -2 -1
//[Moo, Mo2, Mi8, No2, Nio2, Nii4, K]
tv->reorder({{-6, -4}, {-5, -6}, {-4, -3}, {-3, -5}});
// -7 -6 -5 -4 -3 -2 -1
//[Moo, Mi8, Nio2, Mo2, No2, Nii4, K ]
if (transposed) {
tv->reorder({{-2, -1}, {-1, -2}});
// -7 -6 -5 -4 -3 -2 -1
//[Moo, Mi8, Nio2, Mo2, No2, K, Nii4]
}
tv->merge(-5);
tv->merge(-4);
tv->merge(-3);
//[Moo, Mi8, Warp, K/Nii4]
tv->axis(-2)->parallelize(ParallelType::TIDx);
}
void scheduleLdMatrix(TensorView* tv, MmaOptions options) {
// Check if tv should use ldmatrix layout and
// if tv is immediate output of ldmatrix
bool is_immediate_output = checkLdMatrixTv(tv);
// Decode transposition requirement for turing mma
bool transposed = options.operand == MmaOptions::Operand::A
? !isOperandTransposed(options)
: isOperandTransposed(options);
// Check mma option is supported
TORCH_CHECK(
options.macro == MmaOptions::MacroType::Ampere_16_8_16 ||
options.macro == MmaOptions::MacroType::Ampere_16_16_16 ||
options.macro == MmaOptions::MacroType::Turing_16_8_16 ||
options.macro == MmaOptions::MacroType::Turing_16_16_16,
"scheduleLdMatrix: unknown macro for ldmatrix");
if (options.operand == MmaOptions::Operand::A) {
TORCH_INTERNAL_ASSERT(tv->nDims() >= 2);
// validation:
auto mma = options.mmaOp();
auto m_dims = getMmaRootDimensions(tv, mma, MmaDimension::M);
auto k_dims = getMmaRootDimensions(tv, mma, MmaDimension::K);
TORCH_INTERNAL_ASSERT(
canValidateIsInnerDim(m_dims.back(), tv->axis(-2), 16),
"MMA swizzle: requires instruction tile iterdomains on the innermost side of the tensordomain");
TORCH_INTERNAL_ASSERT(
canValidateIsInnerDim(k_dims.back(), tv->axis(-1), 16),
"MMA swizzle: requires instruction tile iterdomains on the innermost side of the tensordomain",
tv->toString());
//[16m, 16k]
tv->split(-2, 8);
tv->split(-1, 8);
// -4 -3 -2 -1
//[2o, 8o, 2i, 8i]
tv->reorder({{-4, -3}, {-3, -2}, {-2, -4}});
// -4 -3 -2 -1
// [2i, 2o, 8o, 8i]
if (transposed) {
tv->reorder({{-1, -2}, {-2, -1}});
}
tv->merge(-4);
tv->merge(-3);
// [warp, 8i/o]
tv->axis(-2)->parallelize(ParallelType::TIDx);
} else if (options.operand == MmaOptions::Operand::B) {
auto mma = options.mmaOp();
auto n_dims = getMmaRootDimensions(tv, mma, MmaDimension::N);
auto k_dims = getMmaRootDimensions(tv, mma, MmaDimension::K);
TORCH_INTERNAL_ASSERT(
canValidateIsInnerDim(k_dims.back(), tv->axis(-1), 16),
"MMA swizzle: requires instruction tile iterdomains on the innermost side of the tensordomain");
// Each ldmatrix 4 would be loading an effective 16x16x16 tile, which is 2x
// the
// size of regular 16x8x16 tile supported by largest mma operation. The
// swizzle also needs to be different to take this into account.
// TODO:
// Using an emulated 16x16x16 mma tile is a temporary step to enable the
// widest load possible for scheduler bring up phase.
// A unifying step would be needed in a follow up to support all these
// swizzles
// with a single affine utility.
bool use_ldmatrix4 = canValidateIsInnerDim(n_dims.back(), tv->axis(-2), 16);
if (use_ldmatrix4) {
// [... N16, K16]
tv->split(-2, 8);
tv->split(-1, 8);
// -4 -3 -2 -1
// [... N2o, N8, K2o, K8]
tv->reorder({{-3, -2}, {-2, -3}});
// [... N2o, K2o, N8, K8]
if (transposed) {
tv->reorder({{-1, -2}, {-2, -1}});
}
tv->merge(-4);
tv->merge(-3);
// [Warp, K8]
tv->axis(-2)->parallelize(ParallelType::TIDx);
if (is_immediate_output) {
tv->axis(-1)->parallelize(ParallelType::Vectorize);
}
} else {
// validation:
TORCH_INTERNAL_ASSERT(
canValidateIsInnerDim(n_dims.back(), tv->axis(-2), 8),
"MMA swizzle: requires instruction tile iterdomains on the innermost side of the tensordomain");
if (transposed) {
// [8, 16]
tv->split(-2, 4);
// [2i, 4i, 16]
tv->reorder({{-1, -2}, {-2, -1}});
// [2i, 16, 4i]
tv->merge(-3);
// [warp, 4i]
} else {
//[8, 16]
tv->split(-1, 4);
tv->split(-2, 2);
// 0 1 2 3
//[8, oo2,oi2,i4]
tv->reorder({{-4, -2}, {-2, -4}});
// 0 1 2 3
//[oi2, oo2, 8,i4]
tv->merge(-4);
tv->merge(-3);
// 0 1
//[warp, i4]
}
tv->axis(-2)->parallelize(ParallelType::TIDx);
}
} else {
TORCH_INTERNAL_ASSERT(false, "unreachable");
}
if (is_immediate_output) {
tv->axis(-1)->parallelize(ParallelType::Vectorize);
}
}
} // namespace
void WarpMmaSwizzler::scheduleVoltaOperandRead(
TensorView* tv,
MmaOptions options) {
switch (options.operand) {
case MmaOptions::Operand::A:
scheduleVoltaA(tv, options);
setWarpMapped(tv, 3);
break;
case MmaOptions::Operand::B:
scheduleVoltaB(tv, options);
setWarpMapped(tv, 4);
break;
default:
TORCH_CHECK(false, "WarpMmaSwizzler: please specify operand");
}
}
// Fp32 and Fp16 outputs have different layouts on volta,
// but we only support fp32 accumulate at this stage.
void WarpMmaSwizzler::scheduleVoltaM16N16K4Fp32Output(
TensorView* tv,
const MmaOptions& options) {
// Assume last 2 dims [M16, N16] or [M16, N16, R]
bool is_reduction = tv->axis(-1)->isReduction();
// Make sure instruction tile size is correct.
if (is_reduction) {
validateMmaRootInnerMNK(tv, options, 16, 16, 4);
} else {
validateMmaRootInnerMN(tv, options, 16, 16);
}
int m_pos = is_reduction ? -3 : -2;
// Assumed:
// m
// [..., 16,16, (4)]
// [..., M, N, (R)]
tv->split(m_pos, 4);
tv->split(m_pos, 2);
tv->split(m_pos + 1, 8);
tv->split(m_pos + 1, 4);
tv->split(m_pos + 1, 2);
// m-5 m-4 m-3 m-2 m-1 m m+1 m+2
// [..., Mo4, Mio2, Mii2, No2, Nio2, Niio2, Niii2, (R)]
tv->reorder(
{{m_pos - 4, m_pos - 1},
{m_pos - 3, m_pos - 2},
{m_pos - 2, m_pos - 4},
{m_pos - 1, m_pos},
{m_pos, m_pos - 3}});
// m-5 m-4 m-3 m-2 m-1 m m+1 m+2
// [..., Mo4, No2, Niio2, Mii2, Mio2, Nio2, Niii2, (R)]
tv->merge(m_pos - 5);
tv->merge(m_pos - 4);
tv->merge(m_pos - 3);
// m-2 m-1 m m+1 m+2
//[Warp, Mio2, Nio2, Niii2, (R)]
tv->axis(m_pos - 2)->parallelize(ParallelType::TIDx);
if (is_reduction && tv->definition()->isA<MmaOp>()) {
// Set instruction loops for mma reduce output
for (int pos : c10::irange(5)) {
if (!tv->axis(-pos - 1)->isThread()) {
tv->axis(-pos - 1)->parallelize(ParallelType::Mma);
}
tv->axis(-pos - 1)->toMmaSwizzled();
}
}
}
void WarpMmaSwizzler::scheduleTuringOperandRead(
TensorView* tv,
MmaOptions options) {
scheduleLdMatrix(tv, options);
setWarpMapped(tv, 2);
}
void WarpMmaSwizzler::scheduleTuringM16N8K16MmaWarpOutput(
TensorView* tv,
const MmaOptions& options) {
// Assume last 2 dims [M16, N8] or [M16, N8, R]
// Locate instruction m
bool is_reduction = tv->axis(-1)->isReduction();
// Make sure instruction tile size is correct.
if (is_reduction) {
validateMmaRootInnerMNK(tv, options, 16, 8, 16);
} else {
validateMmaRootInnerMN(tv, options, 16, 8);
}
int m_pos = is_reduction ? -3 : -2;
// m
// [16, 8 (,R)]
tv->split(m_pos, 8);
tv->split(m_pos + 1, 2);
// m
// [2o, 8o, 4i, 2i (,R)]
tv->merge(m_pos - 1);
// m
// [2o, Warp, 2i (,R)]
TORCH_CHECK(tv->definition() != nullptr);
if (is_reduction && tv->definition()->isA<MmaOp>()) {
// Set instruction loops for mma reduce
for (int pos : c10::irange(4)) {
tv->axis(-pos - 1)->parallelize(ParallelType::Mma);
}
}
tv->axis(m_pos)->parallelize(ParallelType::TIDx);
}
void WarpMmaSwizzler::scheduleTuringM16N16K16MmaWarpOutput(
TensorView* tv,
const MmaOptions& options) {
// Assume last 2 dims [M16, N8] or [M16, N8, R]
// Locate instruction m
bool is_reduction = tv->axis(-1)->isReduction();
// Make sure instruction tile size is correct.
if (is_reduction) {
validateMmaRootInnerMNK(tv, options, 16, 16, 16);
} else {
validateMmaRootInnerMN(tv, options, 16, 16);
}
int m_pos = is_reduction ? -3 : -2;
// m
// [16, 16 (,R)]
tv->split(m_pos + 1, 8);
// m
// [16, n2, 8 (,R)]
tv->reorder({{m_pos, m_pos - 1}, {m_pos - 1, m_pos}});
// m
// [n2, 16, 8 (,R)]
tv->split(m_pos, 8);
tv->split(m_pos + 1, 2);
// m
// [2o, 8o, 4i, 2i (,R)]
tv->merge(m_pos - 1);
// m
// [2o, Warp, 2i (,R)]
TORCH_CHECK(tv->definition() != nullptr);
if (is_reduction && tv->definition()->isA<MmaOp>()) {
// Set instruction loops for mma reduce
for (int pos : c10::irange(5)) {
tv->axis(-pos - 1)->parallelize(ParallelType::Mma);
}
}
tv->axis(m_pos)->parallelize(ParallelType::TIDx);
}
namespace {
bool isMmaInitLoop(const kir::Scope& loop_body) {
for (auto expr : loop_body.exprs()) {
if (auto inner_loop = dynamic_cast<kir::ForLoop*>(expr)) {
if (!isMmaInitLoop(inner_loop->body())) {
return false;
}
} else if (auto uop = dynamic_cast<UnaryOp*>(expr)) {
if (!ir_utils::isTvOp(expr) ||
uop->getUnaryOpType() != UnaryOpType::Set) {
return false;
}
if (auto ti = dynamic_cast<kir::TensorIndex*>(expr->output(0))) {
if (!ti->view()->definition() ||
!ti->view()->definition()->isA<MmaOp>()) {
return false;
}
}
if (auto tv = dynamic_cast<TensorView*>(expr->output(0))) {
if (!tv->definition() || !tv->definition()->isA<MmaOp>()) {
return false;
}
}
} else if (auto ite = dynamic_cast<kir::IfThenElse*>(expr)) {
if (!isMmaInitLoop(ite->thenBody())) {
return false;
}
if (!isMmaInitLoop(ite->elseBody())) {
return false;
}
} else {
return false;
}
}
return true;
}
} // namespace
bool isMmaInitLoop(const kir::ForLoop* loop) {
return isMmaInitLoop(loop->body());
}
} // namespace mma_util
void scheduler_utils::matmul_utils::canonicalizeMmaTvOrdering(TensorView* tv) {
std::unordered_set<IterDomain*> root_id_set{
tv->getMaybeRFactorDomain().begin(), tv->getMaybeRFactorDomain().end()};
auto mma = dynamic_cast<MmaOp*>(tv->definition());
TORCH_CHECK(
mma != nullptr, "canonicalizeMmaTvOrdering : only support mma op output");
auto m_id_set = mma_util::getMmaDomainSet(mma, mma_util::MmaDimension::M);
auto n_id_set = mma_util::getMmaDomainSet(mma, mma_util::MmaDimension::N);
auto k_id_set = mma_util::getMmaDomainSet(mma, mma_util::MmaDimension::K);
std::vector<int> batch_pos, prev_reduction_pos, m_pos, n_pos, k_pos;
auto ndims = tv->nDims();
for (auto idx : c10::irange(ndims)) {
auto id = tv->axis(idx);
TORCH_CHECK(root_id_set.count(id), id->toString(), " not a root id.");
// Categorize each original iterdomain position
if (m_id_set.count(id)) {
m_pos.push_back(idx);
} else if (n_id_set.count(id)) {
n_pos.push_back(idx);
} else if (k_id_set.count(id)) {
k_pos.push_back(idx);
} else if (id->isReduction()) {
prev_reduction_pos.push_back(idx);
} else {
batch_pos.push_back(idx);
}
}
// Collect all mma id's, other id's would be either
// batch or incoming reduction.
// Ordering map from old position to new position
// that we wil build using the position vectors.
std::unordered_map<int, int> order_map;
// Running position counter keeping track of the
// current insert position in order_map.
int current_pos = 0;
// Utility to insert the ordered pos sequences to
// the ordering map.
auto insert_to_order_map =
[&order_map, ¤t_pos](const std::vector<int>& original_pos) {
for (auto pos : original_pos) {
order_map[pos] = current_pos++;
}
};
// Order the categories, while keeping the original
// intra-category ordering.
insert_to_order_map(batch_pos);
insert_to_order_map(prev_reduction_pos);
insert_to_order_map(m_pos);
insert_to_order_map(n_pos);
insert_to_order_map(k_pos);
// Validate that all of the root ids are covered by
// the inserted categories.
TORCH_INTERNAL_ASSERT(current_pos == ndims, "Id not completely categorized");
// Apply the new ordering
tv->reorder(order_map);
}
} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch
|