File: normalization.h

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (38 lines) | stat: -rw-r--r-- 1,126 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
#pragma once

#include <ATen/core/ivalue.h>

#include <torch/csrc/jit/codegen/cuda/fusion.h>
#include <torch/csrc/jit/codegen/cuda/scheduler/reduction_heuristic.h>

// TODO: If caching inputs would require persistence we are sending it to the
// persistent kerenl scheduler. This isn't necessary if the only persistent
// buffers are inputs as we could re-read them from global memory. Need to
// consider if this is worth implementing.

namespace torch {
namespace jit {
namespace fuser {
namespace cuda {

class SchedulerRuntimeInfo;
class HeuristicSummary;

TORCH_CUDA_CU_API std::shared_ptr<ReductionParams> getPersistentHeuristics(
    Fusion* fusion,
    const at::ArrayRef<c10::IValue>& runtime_inputs,
    HeuristicSummary* data_cache = nullptr);

TORCH_CUDA_CU_API std::shared_ptr<ReductionParams> getPersistentHeuristics(
    Fusion* fusion,
    SchedulerRuntimeInfo& runtime_info,
    HeuristicSummary* data_cache = nullptr);

TORCH_CUDA_CU_API void schedulePersistentKernel(
    Fusion* fusion,
    const ReductionParams& rparams);

} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch