File: pointwise.cpp

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (742 lines) | stat: -rw-r--r-- 27,436 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
#include <torch/csrc/jit/codegen/cuda/scheduler/pointwise.h>

#include <torch/csrc/jit/codegen/cuda/executor_utils.h>
#include <torch/csrc/jit/codegen/cuda/inline_propagator.h>
#include <torch/csrc/jit/codegen/cuda/instrumentation.h>
#include <torch/csrc/jit/codegen/cuda/ir_iostream.h>
#include <torch/csrc/jit/codegen/cuda/ir_utils.h>
#include <torch/csrc/jit/codegen/cuda/lower_utils.h>
#include <torch/csrc/jit/codegen/cuda/scheduler/pointwise_utils.h>
#include <torch/csrc/jit/codegen/cuda/scheduler/registry.h>
#include <torch/csrc/jit/codegen/cuda/scheduler/utils.h>
#include <torch/csrc/jit/codegen/cuda/scheduler/vectorize_helper.h>
#include <torch/csrc/jit/codegen/cuda/transform_replay.h>
#include <torch/csrc/jit/codegen/cuda/utils.h>

#include <ATen/cuda/CUDAContext.h>

#include <algorithm>
#include <unordered_map>

namespace torch {
namespace jit {
namespace fuser {
namespace cuda {

namespace {
// constexpr int64_t x_grid_limit = ((int64_t)1 << (int64_t)31) - (int64_t)1;
// Unused at the moment, commenting for clang tidy
constexpr int64_t kThreadX = 128;

class DomainMap : public pointwise_utils::DomainMap {
 public:
  using pointwise_utils::DomainMap::DomainMap;

  // The pointwise scheduler heuristics requires a minimum number of axes.
  // The output reference tensor should respect this requirement.
  TensorView* findReferenceTensorView(int minimum_num_axes = 0) const {
    TensorView* result = nullptr;
    int max_dims = -1;
    for (auto output_tv :
         ir_utils::filterByType<TensorView>(fusion_->outputs())) {
      if (isValidReference(output_tv) &&
          hasMinimumSize(output_tv, minimum_num_axes) &&
          !output_tv->isFusionInput()) {
        int n_dims = pointwise_utils::nRootDims(output_tv);
        if (n_dims > max_dims) {
          result = output_tv;
          max_dims = n_dims;
        }
      }
    }
    return result;
  }

  static bool hasReferenceTensorView(Fusion* fusion) {
    FusionGuard fg(fusion);
    DomainMap domain_map(fusion);
    return domain_map.findReferenceTensorView() != nullptr;
  }

 private:
  bool hasMinimumSize(TensorView* tv, int num_axes) const {
    TORCH_INTERNAL_ASSERT(tv != nullptr);
    return (num_axes == 0 || tv->getMaybeRFactorDomain().size() > num_axes);
  }
};

} // namespace

std::shared_ptr<PointwiseParams> getPointwiseHeuristics(
    Fusion* fusion,
    const at::ArrayRef<c10::IValue>& runtime_inputs,
    HeuristicSummary* data_cache) {
  SchedulerRuntimeInfo runtime_info(fusion, runtime_inputs, true);
  return getPointwiseHeuristics(fusion, runtime_info, data_cache);
}

std::shared_ptr<PointwiseParams> getPointwiseHeuristics(
    Fusion* fusion,
    SchedulerRuntimeInfo& runtime_info,
    HeuristicSummary* data_cache) {
  FUSER_PERF_SCOPE("getPointwiseHeuristics");

  FusionGuard fg(fusion);

  // Incase any buffer is of type DataType::Index
  DataType index_type = indexModeToDtype(runtime_info.getIndexMode());

  auto in_tvs = ir_utils::filterByType<TensorView>(fusion->inputs());

  auto domain_map_entry =
      HeuristicSummaryEntry<HeuristicCompileTime::DomainMap>(
          data_cache,
          [fusion]() { return std::make_unique<DomainMap>(fusion); });
  const auto& domain_map = dynamic_cast<DomainMap&>(domain_map_entry.get());

  auto largest_out_entry =
      HeuristicSummaryEntry<HeuristicCompileTime::ReferenceTensors>(
          data_cache, [&domain_map]() {
            std::vector<TensorView*> data{domain_map.findReferenceTensorView()};
            return std::make_unique<std::vector<TensorView*>>(std::move(data));
          });
  TensorView* largest_out = largest_out_entry.get()[0];

  TORCH_INTERNAL_ASSERT(largest_out != nullptr);

  const int64_t device_multiprocessor_count =
      (int64_t)at::cuda::getCurrentDeviceProperties()->multiProcessorCount;

  // TODO: Set to 1?
  int64_t max_input_dtype_size = 2;

  for (auto inp : in_tvs) {
    max_input_dtype_size = std::max(
        max_input_dtype_size,
        (int64_t)dataTypeSize(inp->getDataType().value(), index_type));
  }

  auto ref_root = largest_out->getMaybeRFactorDomain();
  std::vector<int64_t> elem_counts(ref_root.size(), 1);
  int64_t n_elems = 1;
  for (size_t ref_i = 0; ref_i < ref_root.size(); ref_i++) {
    auto inferred_val =
        runtime_info.expressionEvaluator().evaluate(ref_root[ref_i]->extent());
    TORCH_INTERNAL_ASSERT(
        inferred_val.has_value(),
        "Error inferring size for pointwise scheduler: ",
        ref_root[ref_i]->extent()->toInlineString());
    elem_counts[ref_i] = inferred_val->as<int64_t>();
    n_elems *= elem_counts[ref_i];
  }

  // If zero dimensional or zero size, return default parameters
  if (TensorDomain::noReductions(
          TensorDomain::noBroadcasts(largest_out->domain()->domain()))
              .size() == 0 ||
      n_elems == 0) {
    auto vectorizable_inputs_outputs_entry = HeuristicSummaryEntry<
        HeuristicCompileTime::VectorizableInputsAndOutputs>(data_cache, []() {
      return std::make_unique<std::vector<TensorView*>>();
    });
    vectorizable_inputs_outputs_entry.get();

    auto broadcast_byte_multiples_entry =
        HeuristicSummaryEntry<HeuristicCompileTime::BroadcastMultiples>(
            data_cache, []() {
              return std::make_unique<
                  std::vector<scheduler_utils::BroadcastMultiple>>();
            });
    broadcast_byte_multiples_entry.get();
    return std::make_shared<PointwiseParams>("Pointwise heuristics");
  }

  // Find all vectorizable inputs/outputs
  auto vectorizable_inputs_outputs_entry =
      HeuristicSummaryEntry<HeuristicCompileTime::VectorizableInputsAndOutputs>(
          data_cache, [&largest_out]() {
            return std::make_unique<std::vector<TensorView*>>(
                scheduler_utils::getInputsOutputsWithInnerDim(
                    largest_out, true, true));
          });

  constexpr int64_t kSixteen = 16; // clang tidy

  auto max_unroll_factor = ceilDiv(
      // Available unrolling based on size of data type
      (int64_t)kSixteen / max_input_dtype_size,
      // Reduce max unrolling factor if we have many inputs/outputs to unroll
      // as it could start consuming a lot of registers.
      std::max(
          (scheduler_utils::lastPow2(
               (int64_t)vectorizable_inputs_outputs_entry.get().size()) >>
           2),
          (int64_t)1));

  // Don't unroll at the cost of getting a full wave on the GPU
  if (n_elems < device_multiprocessor_count * kThreadX &&
      max_unroll_factor > 1) {
    max_unroll_factor = std::min(
        max_unroll_factor,
        ceilDiv(n_elems, device_multiprocessor_count * kThreadX));
  }

  auto params = std::make_shared<PointwiseParams>("Pointwise heuristics");

  /*
   * 2D pointwise scheduling logic. What is expected is there's some
   * broadcasting pattern which would make scheduling as a 2D problem more
   * efficient than scheduling simply as a 1D problem.
   *
   * Mapping count holds how many bytes are in each dimension for both inputs
   * and outputs relative to the reference tensor. What we're looking for is a
   * break point in reference_tvs dimensions which separates the outer dimension
   * and inner dimension of the problem mapped to 2D.
   *
   * break_point is computed assuming no reuse, ignoring parallelization
   * limitations, and simply figures out which point best separates broadcasted
   * dimensions. In other words, where's the point where we isolate the most
   * broadcasted elements to one side.
   *
   * Once a break point is found, simply schedule the pointwise op as 2D
   * balancing parallelization as best as possible.
   */

  // Ideal break point location
  int break_point = 0;

  // If break_point, mark if BIDy and BIDx should be positionally reversed
  // relative to root domains
  bool flip_grid_binding = false;

  // Elements on the right of break point (without break point all are on the
  // right)
  int64_t right_elem_count = 0;

  int64_t bdimx = kThreadX;

  // bdimy may be used if the right side of the break point is not large and we
  // need to expand block level parallelism into the left side of the break
  // point.
  int64_t bdimy = 1;

  // In 2D scheduler gdim_left is used to parallelize the left side of the break
  // point.
  int64_t gdim_left = 1;

  // gdim_right is used if there's too much parallelization in the right side of
  // the break point. We will expand grid parallelization into the right side of
  // the break point with gdim_left and use gdim_right for the left side of the
  // break point.
  int64_t gdim_right = 1;

  auto broadcast_byte_multiples_entry =
      HeuristicSummaryEntry<HeuristicCompileTime::BroadcastMultiples>(
          data_cache, [&largest_out, &index_type]() {
            return std::make_unique<
                std::vector<scheduler_utils::BroadcastMultiple>>(
                scheduler_utils::getBroadcastMultiples(
                    largest_out, index_type));
          });

  auto& broadcast_byte_multiples = broadcast_byte_multiples_entry.get();

  TORCH_INTERNAL_ASSERT(broadcast_byte_multiples.size() == ref_root.size());

  int64_t dtype_sum = 0;
  for (auto inp : ir_utils::filterByType<TensorView>(fusion->inputs())) {
    dtype_sum += dataTypeSize(inp->getDataType().value(), index_type);
  }
  for (auto out : ir_utils::filterByType<TensorView>(fusion->outputs())) {
    dtype_sum += dataTypeSize(out->getDataType().value(), index_type);
  }

  { // Figure out break point position. Empty scope, consider moving to a
    // separate function.
    //
    // How much would this transfer cost if it was done as a 1-D schedule
    int64_t transfer_size_1d = 1;

    for (const auto i : c10::irange(ref_root.size())) {
      transfer_size_1d = transfer_size_1d * elem_counts[i] * dtype_sum;
    }

    // If there isn't very much parallelism available, just use 1D scheduler
    if (n_elems * 2 > device_multiprocessor_count * kThreadX) {
      int64_t min_total_transfer = std::numeric_limits<int64_t>::max();

      for (const auto break_point_i : c10::irange(ref_root.size())) {
        // Number of elements in the right side of reference tv with
        // break_point_i
        int64_t cur_right_elem_count = 1;
        for (const auto right_i : c10::irange(break_point_i, ref_root.size())) {
          cur_right_elem_count = cur_right_elem_count * elem_counts[right_i];
        }

        auto cur_left_elem_count = n_elems / cur_right_elem_count;
        if (cur_left_elem_count <= 1) {
          continue;
        }

        auto lhs_byte_multiple =
            broadcast_byte_multiples[break_point_i].lhs_multiple;
        auto rhs_byte_multiple =
            broadcast_byte_multiples[break_point_i].rhs_multiple;

        // Estimate transfer cost with this break point
        int64_t cur_transfer_size = 1;
        int64_t right_transfer_size = 1;

        for (const auto left_i : c10::irange(break_point_i)) {
          cur_transfer_size =
              cur_transfer_size * elem_counts[left_i] * lhs_byte_multiple;
        }

        for (const auto right_i : c10::irange(break_point_i, ref_root.size())) {
          right_transfer_size =
              right_transfer_size * elem_counts[right_i] * rhs_byte_multiple;
        }
        cur_transfer_size *= right_transfer_size;

        //  Continue if this break point doesn't save at least 10% of 1D
        //  scheduling or isn't better than previous break_points found.
        if (cur_transfer_size >= min_total_transfer ||
            cur_transfer_size * 10 >= transfer_size_1d * 9) {
          continue;
        }

        // Need to be able to parallelize, don't use break if there's not
        // at least an unrolled warp.
        if (ceilDiv(cur_right_elem_count, max_unroll_factor) <=
            at::cuda::getCurrentDeviceProperties()->warpSize) {
          continue;
        }

        // If outer broadcast, or balanced broadcast:
        if (lhs_byte_multiple <= rhs_byte_multiple &&
            // If right transfer size is bigger than half of L2
            at::cuda::getCurrentDeviceProperties()->l2CacheSize <
                right_transfer_size * 2) {
          // flip BIDx and BIDy bindings
          flip_grid_binding = true;
        } else {
          flip_grid_binding = false;
        }
        // Min transfer found, start setting values
        bdimx = std::min(
            ceilDiv(cur_right_elem_count, max_unroll_factor), kThreadX);
        bdimy = 1;
        gdim_right = 1;
        // Put remainder in bdimy if there's at least a wave of grid level
        // parallelism.
        if (cur_left_elem_count > device_multiprocessor_count) {
          bdimy = kThreadX / bdimx;
        }
        auto remainder_left = ceilDiv(cur_left_elem_count, bdimy);
        auto remainder_right =
            ceilDiv(cur_right_elem_count, bdimx * max_unroll_factor);
        // Use this break point
        break_point = static_cast<int>(break_point_i);
        min_total_transfer = cur_transfer_size;
        right_elem_count = cur_right_elem_count;

        gdim_left = remainder_left;
        gdim_right = remainder_right;
      }
    }
  }

  // Vectorizing innermost domains

  // Don't try to vectorize if it's not recommended
  params->unroll_factor = 1;

  // Compute maximum vectorize factor that can be used
  size_t vectorize_factor = max_unroll_factor;
  auto& vectorizable_inputs_outputs = vectorizable_inputs_outputs_entry.get();

  for (auto tv : vectorizable_inputs_outputs) {
    const auto tv_vectorize_factor =
        runtime_info.getInnerDimVectorizableWidth(tv);
    vectorize_factor = std::min(vectorize_factor, tv_vectorize_factor);
  }

  // Try expanding vectorization to contig merged domains
  auto expanded_vector_word_size =
      scheduler_utils::expandVectorizationToContigMergedDomains(
          fusion,
          runtime_info,
          vectorizable_inputs_outputs,
          largest_out,
          break_point,
          vectorize_factor);

  expanded_vector_word_size = std::min(
      static_cast<size_t>(max_unroll_factor), expanded_vector_word_size);

  if (expanded_vector_word_size > vectorize_factor) {
    vectorize_factor = expanded_vector_word_size;
  }

  if (vectorize_factor == 1) {
    params->vectorize = false;
    params->unroll_factor = max_unroll_factor;
  } else {
    params->vectorize = true;
    params->unroll_factor = vectorize_factor;
  }

  TORCH_INTERNAL_ASSERT(right_elem_count > 0 || break_point == 0);
  TORCH_INTERNAL_ASSERT(!(bdimy > 1 && gdim_right > 1));

  params->break_point = break_point;
  params->flip_grid_binding = flip_grid_binding;
  params->split_block = bdimy > 1;

  params->lparams.bind(bdimx, ParallelType::TIDx);
  if (params->split_block) {
    params->lparams.bind(bdimy, ParallelType::TIDy);
  }
  if ((flip_grid_binding && gdim_right > 65535) ||
      (!flip_grid_binding && gdim_left > 65535)) {
    params->split_grid_y_dim = true;
  }

  if (isDebugDumpEnabled(DebugDumpOption::SchedulerDebug)) {
    std::cerr << "\n===== Pointwise Stats ========\n"
              << "num_elems: " << n_elems << "\n"
              << "elem_counts: " << elem_counts << "\n"
              << "max_input_dtype_size: " << max_input_dtype_size << "\n"
              << "vectorize_factor: " << vectorize_factor << std::endl;
    std::cerr << "broadcast_byte_multiples: ";
    for (auto multiple : broadcast_byte_multiples) {
      std::cerr << "(" << multiple.lhs_multiple << ", " << multiple.rhs_multiple
                << "), ";
    }
    std::cerr << "LHS elems: "
              << (right_elem_count > 0 ? n_elems / right_elem_count : 0)
              << " RHS elems: " << right_elem_count << std::endl;
    std::cerr << std::endl;
    std::cerr << params->toString() << std::endl;
  }

  return params;
}

// TODO: remove or return launch parameters
LaunchParams schedulePointwise(
    Fusion* fusion,
    const at::ArrayRef<c10::IValue>& runtime_inputs) {
  FUSER_PERF_SCOPE("scheduleFusion");
  auto params = getPointwiseHeuristics(fusion, runtime_inputs);
  TORCH_INTERNAL_ASSERT(
      params != nullptr, "Could not schedule pointwise operation.");
  schedulePointwise(fusion, *params);
  return params->lparams;
}

bool hasReferenceTensorView(Fusion* fusion) {
  return DomainMap::hasReferenceTensorView(fusion);
}

// TODO: Inline intermediate operations (avoid inlining unrolled/vectorized
// input/output caches)
void schedulePointwise(Fusion* fusion, const PointwiseParams& params) {
  FusionGuard fg(fusion);

  // Make sure we don't have global memory set on intermediate tensors from
  // fusion segmentation
  scheduler_utils::clearMemorySpace(fusion);

  // maybe has_reduction for scheduling should be done on a per output tensor
  // basis.
  TORCH_INTERNAL_ASSERT(
      ir_utils::getReductionOps(fusion /*, ignore_trivial=true */).empty(),
      "This scheduler only handles pointwise ops.");

  // Cache inputs
  auto cached_inputs = scheduler_utils::cacheInputs(fusion, true);

  // Cache and fork outputs
  auto cached_outputs = scheduler_utils::cacheAndForkOutputs(fusion, true);

  std::vector<TensorView*> input_tvs;
  {
    auto filtered_tvs = ir_utils::filterByType<TensorView>(fusion->inputs());
    // Remove hanging tensor views
    for (auto tv : filtered_tvs) {
      if (tv->uses().empty()) {
        continue;
      }
      input_tvs.push_back(tv);
    }
  }
  auto output_tvs = ir_utils::filterByType<TensorView>(fusion->outputs());

  size_t max_dims = 0;
  for (auto inp : input_tvs) {
    max_dims = std::max(pointwise_utils::nRootDims(inp), max_dims);
  }

  for (auto out : output_tvs) {
    max_dims = std::max(pointwise_utils::nRootDims(out), max_dims);
  }

  // If everything is zero dim tensors, just return.
  if (max_dims == 0) {
    return;
  }

  DomainMap domain_map(fusion);
  TensorView* reference_tv =
      domain_map.findReferenceTensorView(params.break_point);

  TORCH_INTERNAL_ASSERT(
      reference_tv != nullptr,
      "Could not find a fully broadcasted output to reference schedule on.");

  auto all_tvs = ir_utils::allTvs(fusion);

  // Merge right side of break point
  int rhs_i = -1;
  for (int i = (int)reference_tv->nDims(); i > (int)params.break_point; i--) {
    auto axis_i = i - 1;
    if (rhs_i == -1) {
      rhs_i = axis_i;
    } else {
      reference_tv->merge(axis_i, rhs_i);
      rhs_i = axis_i;
    }
  }
  if (rhs_i >= 0) {
    // If there's an rhs
    reference_tv->reorder({{rhs_i, -1}});
  }

  // Merge left side of break point
  int lhs_i = -1;
  for (int i = (int)params.break_point; i > 0; i--) {
    auto axis_i = i - 1;
    if (lhs_i == -1) {
      lhs_i = axis_i;
    } else {
      reference_tv->merge(axis_i, lhs_i);
      lhs_i = axis_i;
    }
  }

  int64_t unswitch_pos;
  IterDomain* vectorize_id = nullptr;
  if (params.break_point) {
    // 2D parallelization scheme
    TORCH_INTERNAL_ASSERT(rhs_i >= 0 && lhs_i >= 0);

    // Right (inner merged) dimension is at inner most position, left (outer
    // merged) dimension is at lhs_i. Order as [lhs_i, rhs_i, unmerged...]
    reference_tv->reorder({{lhs_i, 0}, {-1, 1}});

    if (params.vectorize) {
      reference_tv->split(1, params.unroll_factor);
      reference_tv->split(1, NamedScalar::getParallelDim(ParallelType::TIDx));
      reference_tv->split(0, 1);
      // [outer, Unswitch | i-remainder, TIDx, Vectorization]
      reference_tv->axis(1)->parallelize(ParallelType::Unswitch);
      reference_tv->axis(3)->parallelize(ParallelType::TIDx);
      // Vectorization are propagated separately
      vectorize_id = reference_tv->axis(4);

      // [outer, Unswitch | i-remainder, TIDx, Vectorization]
      // To make consistent with unrolling:
      reference_tv->reorder({{1, 2}, {2, 1}, {3, 4}, {4, 3}});
      //[outer | i-remainder, Unswitch, Vectorization, TIDx]
    } else {
      reference_tv->split(1, NamedScalar::getParallelDim(ParallelType::TIDx));
      reference_tv->split(1, params.unroll_factor);

      reference_tv->split(0, 1);
      // [outer, unswitch | i-remainder, unroll, TIDx ]
      reference_tv->reorder({{1, 2}});
      // [outer, i-remainder, unswitch, unroll, TIDx ]
      reference_tv->axis(2)->parallelize(ParallelType::Unswitch);
      // Here we do not set axis(3)->parallelize(Unroll) because we do not want
      // it to be propagated. We manually unroll by splitting the inline
      // propagation process into two steps:
      // step 1: inline at the unswitch position for cached inputs and outputs
      // step 2: inline at the inner most dim for the rest of the graph
      reference_tv->axis(4)->parallelize(ParallelType::TIDx);

      //[outer | i-remainder, Unswitch, Unroll, TIDx]
    }

    // Move out of the way to furthest left point
    reference_tv->reorder({{1, 0}});

    //[i-remainder | outer | Unswitch, Unroll, TIDx]
    if (params.split_block) {
      reference_tv->split(1, NamedScalar::getParallelDim(ParallelType::TIDy));
      if (params.flip_grid_binding) {
        // [BIDy | BIDx, TIDy | Unswitch, Unroll, TIDx]
        reference_tv->axis(1)->parallelize(ParallelType::BIDx);
        reference_tv->axis(2)->parallelize(ParallelType::TIDy);
        if (params.split_grid_y_dim) {
          // [i-remainder, BIDy{65535} | BIDx, TIDy | Unswitch, Unroll, TIDx]
          reference_tv->split(0, 65535);
          reference_tv->axis(1)->parallelize(ParallelType::BIDy);
          unswitch_pos = 5;
        } else {
          reference_tv->axis(0)->parallelize(ParallelType::BIDy);
          unswitch_pos = 4;
        }
      } else {
        // [BIDx | BIDy TIDy | Unswitch, Unroll, TIDx]
        reference_tv->axis(0)->parallelize(ParallelType::BIDx);
        reference_tv->axis(2)->parallelize(ParallelType::TIDy);
        if (params.split_grid_y_dim) {
          // [BIDx | i-remainder, BIDy{65535}, TIDy | Unswitch, Unroll, TIDx]
          reference_tv->split(1, 65535);
          reference_tv->axis(2)->parallelize(ParallelType::BIDy);
          unswitch_pos = 5;
        } else {
          reference_tv->axis(1)->parallelize(ParallelType::BIDy);
          unswitch_pos = 4;
        }
      }
    } else {
      // [BIDy | BIDx | Unswitch, Unroll, TIDx]
      if (params.flip_grid_binding) {
        // [BIDy | BIDx | Unswitch, Unroll, TIDx]
        reference_tv->axis(1)->parallelize(ParallelType::BIDx);
        if (params.split_grid_y_dim) {
          // [i-remainder, BIDy{65535} | BIDx | Unswitch, Unroll, TIDx]
          reference_tv->split(0, 65535);
          reference_tv->axis(1)->parallelize(ParallelType::BIDy);
          unswitch_pos = 4;
        } else {
          reference_tv->axis(0)->parallelize(ParallelType::BIDy);
          unswitch_pos = 3;
        }
      } else {
        // [BIDx | BIDy | Unswitch, Unroll, TIDx]
        reference_tv->axis(0)->parallelize(ParallelType::BIDx);
        if (params.split_grid_y_dim) {
          // [BIDx | i-remainder, BIDy{65535} | Unswitch, Unroll, TIDx]
          reference_tv->split(1, 65535);
          reference_tv->axis(2)->parallelize(ParallelType::BIDy);
          unswitch_pos = 4;
        } else {
          reference_tv->axis(1)->parallelize(ParallelType::BIDy);
          unswitch_pos = 3;
        }
      }
    }
  } else {
    // 1D Scheduler
    TORCH_INTERNAL_ASSERT(rhs_i >= 0 && lhs_i == -1);

    // right hand side exists and is the only axis we care to schedule, move
    // it from the inner most position to left most. Order as [rhs_i,
    // unmerged...]
    reference_tv->reorder({{-1, 0}});

    if (params.vectorize) {
      // Vectorize
      reference_tv->split(0, params.unroll_factor);
      // Unswitch
      reference_tv->split(0, 1);
      // Threads
      reference_tv->split(0, kThreadX);

      reference_tv->axis(0)->parallelize(ParallelType::BIDx);
      reference_tv->axis(1)->parallelize(ParallelType::TIDx);
      reference_tv->axis(2)->parallelize(ParallelType::Unswitch);
      // Vectorization are propagated separately
      vectorize_id = reference_tv->axis(3);

      //[BIDx, TIDx, Unswitch, Vectorization]
      // To make consistent with unrolling:
      reference_tv->reorder({{1, 3}, {2, 1}, {3, 2}});
      //[BIDx, Unswitch, Vectorization, TIDx]
    } else {
      // Threads
      reference_tv->split(0, kThreadX);
      // Unroll
      reference_tv->split(0, params.unroll_factor);
      // Unswitch
      reference_tv->split(0, 1);

      // [BIDx, Unswitch, Unroll, TIDx]
      reference_tv->axis(0)->parallelize(ParallelType::BIDx);
      reference_tv->axis(1)->parallelize(ParallelType::Unswitch);
      // Here we do not set axis(2)->parallelize(Unroll) because we do not want
      // it to be propagated. We manually unroll by splitting the inline
      // propagation process into two steps:
      // step 1: inline at the unswitch position for cached inputs and outputs
      // step 2: inline at the inner most dim for the rest of the graph
      reference_tv->axis(3)->parallelize(ParallelType::TIDx);
    }
    unswitch_pos = 2;
  }

  TransformPropagator propagator(reference_tv);
  MaxRootDomainInfoSpanningTree spanning_tree(reference_tv);
  spanning_tree.traverse(&propagator);
  scheduler_utils::parallelizeAllLike(reference_tv);

  if (params.vectorize) {
    // Grab all tensor views that should be vectorized
    auto inputs_outputs =
        scheduler_utils::getInputsOutputsWithInnerDim(reference_tv, true, true);
    std::vector<TensorView*> vectorized_tvs;
    bool should_vectorize_reference_tv = false;
    for (auto tv : inputs_outputs) {
      if (tv == reference_tv) {
        should_vectorize_reference_tv = true;
      }
      if (!tv->isFusionInput()) {
        vectorized_tvs.emplace_back(tv);
        continue;
      }
      // move inputs to consumers of inputs
      auto consumer_tvs = ir_utils::consumerTvsOf(tv);
      vectorized_tvs.insert(
          vectorized_tvs.end(), consumer_tvs.begin(), consumer_tvs.end());
    }
    // Aggressively mark with vectorized and cleanup later. That way we
    // don't have to manually specify parallelization outside the reference.
    vectorize_id->parallelize(ParallelType::Vectorize);
    scheduler_utils::parallelizeAllLike(
        reference_tv, vectorized_tvs, {ParallelType::Vectorize});
    if (!should_vectorize_reference_tv) {
      vectorize_id->parallelize(ParallelType::Serial);
    }
  }

  // Begin by inlining at the unswitch position for the entire DAG. The cached
  // inputs, and outputs will keep this inline position, but other tensors will
  // get a higher position in later inline propagation. We need this separate
  // step because we were not using ParallelType::Unroll, so we have to do
  // unrolling manually.
  InlinePropagator inline_unswitch(
      reference_tv, unswitch_pos, ComputeAtMode::BestEffort);
  spanning_tree.traverse(&inline_unswitch);

  // Inline at the inner most position. The CA position of all tensors except
  // inputs, cached inputs and outputs will be updated.
  std::unordered_set<TensorView*> inner_most_tensors(
      all_tvs.begin(), all_tvs.end());
  for (auto cached_input : cached_inputs) {
    inner_most_tensors.erase(cached_input);
  }
  for (auto entry : cached_outputs) {
    auto output = entry.second;
    inner_most_tensors.erase(output);
  }
  InlinePropagator inline_inner_most(
      reference_tv, -1, ComputeAtMode::BestEffort, inner_most_tensors);
  spanning_tree.traverse(&inline_inner_most);
}

} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch