1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
|
#include <torch/csrc/jit/codegen/cuda/scheduler/reduction_utils.h>
#include <torch/csrc/jit/codegen/cuda/expr_evaluator.h>
#include <torch/csrc/jit/codegen/cuda/inline_propagator.h>
#include <torch/csrc/jit/codegen/cuda/ir_cloner.h>
#include <torch/csrc/jit/codegen/cuda/ir_utils.h>
#include <torch/csrc/jit/codegen/cuda/maxinfo_propagator.h>
#include <torch/csrc/jit/codegen/cuda/scheduler/registry.h>
#include <torch/csrc/jit/codegen/cuda/scheduler/utils.h>
#include <torch/csrc/jit/codegen/cuda/transform_replay.h>
namespace torch {
namespace jit {
namespace fuser {
namespace cuda {
namespace reduction_scheduler_utils {
TensorView* scheduleReductionTV(
const ReductionParams& rparams,
TensorView* reduction_tv,
bool has_iter_axis) {
// Outer and inner reduction axis is relative. Outer reduce axis is only valid
// in 3D scheduling. Otherwise inner_reduce_axis is the only reduction axis.
// Inner here though is only relative to the other axis. When
// rparams.fastest_dim == false, the reduction axis is logically outside the
// iteration axis.
const int iter_axis = 0;
const int outer_reduce_axis = rparams.schedule_3D ? 1 : 0;
const int inner_reduce_axis = rparams.schedule_3D ? 2 : has_iter_axis ? 1 : 0;
TORCH_INTERNAL_ASSERT(
(int)reduction_tv->nDims() >
std::max(iter_axis, std::max(outer_reduce_axis, inner_reduce_axis)),
"Issue in scheduling reduction tv, expecting >",
std::max(iter_axis, std::max(outer_reduce_axis, inner_reduce_axis)),
" dimensions, but found ",
reduction_tv->nDims());
TORCH_INTERNAL_ASSERT(
!(rparams.fastest_dim && rparams.vectorize_iter_dom),
"Cannot vectorize iteration domain on inner reductions.");
TORCH_INTERNAL_ASSERT(
!(!rparams.fastest_dim && rparams.vectorize_inner_reduction),
"Cannot vectorize reduction domain on outer reductions.");
TORCH_INTERNAL_ASSERT(
!(rparams.multiple_reds_per_blk && !has_iter_axis),
"Multiple reductions requires an iter domain, but one wasn't found.");
TORCH_INTERNAL_ASSERT(
!(rparams.unroll_factor_iter_dom > 1 && !has_iter_axis),
"Unrolling on iter domain requires an iter domain.");
auto vectorize = [&reduction_tv](int axis, int factor) {
reduction_tv->split(axis, factor);
reduction_tv->axis(axis + 1)->parallelize(ParallelType::Vectorize);
};
auto inner_parallel = [&reduction_tv](int axis, ParallelType ptype) {
reduction_tv->split(axis, NamedScalar::getParallelDim(ptype));
reduction_tv->axis(axis + 1)->parallelize(ptype);
};
auto inner_unswitch = [&reduction_tv](int axis) {
reduction_tv->split(axis, 1);
reduction_tv->axis(axis + 1)->parallelize(ParallelType::Unswitch);
};
auto inner_unroll = [&reduction_tv](int axis, int factor) {
reduction_tv->split(axis, factor);
reduction_tv->axis(axis + 1)->parallelize(ParallelType::Unroll);
};
auto outer_parallel = [&reduction_tv](int axis, ParallelType ptype) {
reduction_tv->split(axis, NamedScalar::getParallelDim(ptype), false);
reduction_tv->axis(axis)->parallelize(ptype);
};
auto outer_unswitch = [&reduction_tv](int axis) {
reduction_tv->split(axis, 1, false);
reduction_tv->axis(axis)->parallelize(ParallelType::Unswitch);
};
auto outer_unroll = [&reduction_tv](int axis, int factor) {
reduction_tv->split(axis, factor, false);
reduction_tv->axis(axis)->parallelize(ParallelType::Unroll);
};
if (rparams.persistent_kernel) {
// Persistent Format:
// [Grid Split, persistent buffer, unswitch, unroll, thread dim, vectorize]
if (rparams.vectorize_inner_reduction) {
vectorize(inner_reduce_axis, rparams.unroll_factor_inner_reduction);
}
auto outer_i = inner_reduce_axis;
if (rparams.cross_grid_inner_reduction) {
outer_parallel(outer_i++, rparams.grid_dim_inner_reduction);
}
reduction_tv->split(
outer_i++, rparams.batches_per_block_inner_reduction, false);
outer_unswitch(outer_i++);
if (!rparams.vectorize_inner_reduction &&
rparams.unroll_factor_inner_reduction > 1) {
outer_unroll(outer_i++, rparams.unroll_factor_inner_reduction);
}
reduction_tv->axis(outer_i)->parallelize(rparams.block_dim_inner_reduction);
if (rparams.pad_inner_reduction_to_warp) {
reduction_tv->axis(outer_i)->padToMultipleOfWarp();
}
} else {
// Non-persistent format:
// [Grid Split, Remainder, unswitch, unroll, thread dim, vectorize]
if (rparams.vectorize_inner_reduction) {
vectorize(inner_reduce_axis, rparams.unroll_factor_inner_reduction);
}
if (rparams.cross_block_inner_reduction) {
inner_parallel(inner_reduce_axis, rparams.block_dim_inner_reduction);
if (rparams.pad_inner_reduction_to_warp) {
reduction_tv->axis(inner_reduce_axis + 1)->padToMultipleOfWarp();
}
}
if (!rparams.vectorize_inner_reduction &&
rparams.unroll_factor_inner_reduction > 1) {
inner_unroll(inner_reduce_axis, rparams.unroll_factor_inner_reduction);
}
inner_unswitch(inner_reduce_axis);
if (rparams.cross_grid_inner_reduction) {
if (rparams.split_grid_dim_inner_reduction) {
outer_parallel(inner_reduce_axis, rparams.grid_dim_inner_reduction);
} else {
reduction_tv->axis(inner_reduce_axis)
->parallelize(rparams.grid_dim_inner_reduction);
}
}
}
// Outer reduction axis
if (rparams.schedule_3D) {
if (rparams.persistent_kernel) {
// Persistent Format:
// [Grid Split, persistent buffer, unroll, thread dim]
auto outer_i = outer_reduce_axis;
if (rparams.cross_grid_outer_reduction) {
outer_parallel(outer_i++, rparams.grid_dim_outer_reduction);
}
reduction_tv->split(
outer_i++, rparams.batches_per_block_outer_reduction, false);
if (rparams.unroll_factor_outer_reduction > 1) {
outer_unroll(outer_i++, rparams.unroll_factor_outer_reduction);
}
reduction_tv->axis(outer_i)->parallelize(
rparams.block_dim_outer_reduction);
} else {
// Non-persistent format:
// [Grid Split, Remainder, unroll, thread dim]
if (rparams.cross_block_outer_reduction) {
inner_parallel(outer_reduce_axis, rparams.block_dim_outer_reduction);
}
if (rparams.unroll_factor_outer_reduction > 1) {
inner_unroll(outer_reduce_axis, rparams.unroll_factor_outer_reduction);
}
if (rparams.cross_grid_outer_reduction) {
outer_parallel(outer_reduce_axis, rparams.grid_dim_outer_reduction);
}
}
}
// Iteration domain
if (has_iter_axis) {
// [Grid Split, unswitch, unroll, thread dim, vectorize]
if (rparams.vectorize_iter_dom) {
vectorize(iter_axis, rparams.unroll_factor_iter_dom);
}
if (isParallelTypeThread(rparams.block_dim_iter_dom)) {
inner_parallel(iter_axis, rparams.block_dim_iter_dom);
}
if (!rparams.vectorize_iter_dom && rparams.unroll_factor_iter_dom > 1) {
inner_unroll(iter_axis, rparams.unroll_factor_iter_dom);
}
if (rparams.unroll_factor_iter_dom > 1) {
inner_unswitch(iter_axis);
}
if (isParallelTypeThread(rparams.grid_dim_iter_dom)) {
if (rparams.split_grid_dim_iter_dom) {
outer_parallel(iter_axis, rparams.grid_dim_iter_dom);
} else {
reduction_tv->axis(iter_axis)->parallelize(rparams.grid_dim_iter_dom);
}
}
}
return sortAndRFactor(reduction_tv);
}
void multiReductionInliner(
Fusion* fusion,
const ReductionParams& rparams,
TensorView* reduction_tv,
TensorView* reference_tv,
std::vector<TensorView*> reduction_tvs,
std::vector<TensorView*> cached_inputs,
std::vector<std::pair<TensorView*, TensorView*>> cached_outputs) {
// Propagate transformations before we rfactor the other reductions
TransformPropagator propagator(reference_tv);
MaxRootDomainInfoSpanningTree(reference_tv).traverse(&propagator);
// If reduction_tv is rfactored, rfactor all reductions.
if (reference_tv != reduction_tv) {
// Apply rfactor to all reductions if applicable
std::vector<int> rfactor_axes;
for (const auto i : c10::irange(reference_tv->nDims())) {
if (reference_tv->axis((int)i)->isReduction() &&
reference_tv->axis((int)i)->isRFactorProduct()) {
rfactor_axes.push_back((int)i);
}
}
for (auto reduction_tv_ : reduction_tvs) {
if (reduction_tv_ == reduction_tv) {
// This should come in already rfactored
continue;
} else {
ir_utils::rfactorHelper(reduction_tv_, rfactor_axes);
}
}
}
bool unroll = rparams.isUnrolled();
bool vectorize =
rparams.vectorize_inner_reduction || rparams.vectorize_iter_dom;
// Propagate parallelization except vectorization and unrolling
scheduler_utils::parallelizeAllLike(
reference_tv,
{},
allParallelTypesExcept(
{ParallelType::Unroll,
ParallelType::Vectorize,
ParallelType::MisalignedVectorize}));
if (unroll) {
// Find all tensor views that should have unroll or vectorization
std::unordered_set<TensorView*> are_unrolled;
// Grab all tensor views that should be vectorized
auto vectorizable_inputs_outputs =
scheduler_utils::getInputsOutputsWithInnerDim(reference_tv, true, true);
auto vectorizable_expr = [](Expr* e) {
return e->isA<UnaryOp>() &&
e->as<UnaryOp>()->getUnaryOpType() == UnaryOpType::Set;
};
for (auto cached_input : cached_inputs) {
if (vectorize) {
auto producer_tvs = ir_utils::producerTvsOf(cached_input);
if (producer_tvs.size() == 1 &&
vectorizable_expr(cached_input->definition()) &&
std::find(
vectorizable_inputs_outputs.begin(),
vectorizable_inputs_outputs.end(),
producer_tvs[0]) != vectorizable_inputs_outputs.end()) {
are_unrolled.emplace(cached_input);
}
} else {
are_unrolled.emplace(cached_input);
}
}
for (auto cached_output_pair : cached_outputs) {
auto output = cached_output_pair.second;
if (vectorize) {
if (vectorizable_expr(output->definition()) &&
std::find(
vectorizable_inputs_outputs.begin(),
vectorizable_inputs_outputs.end(),
output) != vectorizable_inputs_outputs.end()) {
are_unrolled.emplace(output);
}
} else {
are_unrolled.emplace(output);
}
}
// Propagate vectorization/unrolling to those tensors that need it
scheduler_utils::parallelizeAllLike(
reference_tv,
-1,
{are_unrolled.begin(), are_unrolled.end()},
{ParallelType::Unroll,
ParallelType::Vectorize,
ParallelType::MisalignedVectorize});
std::vector<TensorView*> rfactor_and_reduction_tvs = {
reference_tv, reduction_tv};
// If reference shouldn't be unrolled, clear that parallel type.
for (auto tv : rfactor_and_reduction_tvs) {
if (are_unrolled.count(tv) == 0) {
for (const auto i : c10::irange(tv->nDims())) {
auto id = tv->axis((int)i);
if (id->getParallelType() == ParallelType::Unroll ||
id->getParallelType() == ParallelType::Vectorize ||
id->getParallelType() == ParallelType::MisalignedVectorize) {
tv->axis((int)i)->parallelize(ParallelType::Serial);
}
}
}
}
}
// Find iter domains that are mapped to a trivial reduction, these should
// never be inlined.
std::unordered_set<IterDomain*> mapped_to_trivial_reduction =
scheduler_utils::getTrivialReductionMap(fusion);
// Inline the schedule
InlinePropagator inline_propagator(
reference_tv,
-1,
ComputeAtMode::MostInlined,
{},
mapped_to_trivial_reduction);
MaxRootDomainInfoSpanningTree(reference_tv).traverse(&inline_propagator);
}
namespace {
// Convert properties of an ID to a numeric value
int idPos(const IterDomain* id) {
int inner_most = std::numeric_limits<int>::max();
int outer_most = std::numeric_limits<int>::min();
// Trivial reduction
if (id->isReduction() && id->getParallelType() == ParallelType::Serial &&
id->extent()->isOneInt()) {
return inner_most;
}
inner_most--;
// Reduction and unrolled
if (id->isReduction() &&
(id->getParallelType() == ParallelType::Unroll ||
id->getParallelType() == ParallelType::Vectorize ||
id->getParallelType() == ParallelType::MisalignedVectorize)) {
return inner_most;
}
inner_most--;
// Reduction and constant
if (id->isReduction() && id->extent()->isConstScalar()) {
return inner_most;
}
inner_most--;
// Reduction and unswitched
if (id->isReduction() && id->getParallelType() == ParallelType::Unswitch) {
return inner_most;
}
inner_most--;
// Reduction and thread
if (id->isReduction() && id->isThread()) {
return inner_most;
}
inner_most--;
// Broadcast
if (id->isBroadcast() || id->isImplicitBroadcast()) {
return inner_most;
}
inner_most--;
// Iter and unrolled
if (!id->isReduction() &&
(id->getParallelType() == ParallelType::Unroll ||
id->getParallelType() == ParallelType::Vectorize ||
id->getParallelType() == ParallelType::MisalignedVectorize)) {
return inner_most;
}
inner_most--;
// Iter and unswitched
if (!id->isReduction() && id->getParallelType() == ParallelType::Unswitch) {
return inner_most;
}
inner_most--;
// Reduction and non-constant
if (id->isReduction() && !id->extent()->isConstScalar()) {
return inner_most;
}
inner_most--;
// Iter and block (outer)
if (!id->isReduction() && id->isBlockDim()) {
return outer_most;
}
outer_most++;
// Iter and thread (outer)
if (!id->isReduction() && id->isThreadDim()) {
return outer_most;
}
outer_most++;
// Iter and constant
if (!id->isReduction() && id->extent()->isConstScalar()) {
return outer_most;
}
outer_most++;
// Iter and non-constant
if (!id->isReduction() && !id->extent()->isConstScalar()) {
return outer_most;
}
outer_most++;
return 0;
}
struct id_lt {
// Return if id0 should be before id1
inline bool operator()(const IterDomain* id0, const IterDomain* id1) {
return idPos(id0) < idPos(id1);
}
};
} // namespace
TensorView* sortAndRFactor(TensorView* reference_tv) {
auto domain = reference_tv->domain()->domain();
std::sort(domain.begin(), domain.end(), id_lt());
std::unordered_map<int, int> reorder_map;
std::unordered_map<IterDomain*, int> domain_pos;
for (int axis_i = 0; axis_i < (int)domain.size(); axis_i++) {
domain_pos[domain[axis_i]] = axis_i;
}
for (int old_i = 0; old_i < (int)reference_tv->nDims(); old_i++) {
auto new_i_it = domain_pos.find(reference_tv->axis(old_i));
TORCH_INTERNAL_ASSERT(
new_i_it != domain_pos.end(),
"Error in schedule reorder, didn't reorder all axes in provided tv.");
auto new_i = new_i_it->second;
reorder_map[old_i] = new_i;
}
reference_tv->reorder(reorder_map);
std::vector<int> rfactor_axes;
std::vector<int> rfactor_axes_no_unswitch;
size_t reduction_dims = 0;
for (int axis_i = 0; axis_i < (int)reference_tv->nDims(); axis_i++) {
auto id = reference_tv->axis(axis_i);
if (!id->isReduction()) {
continue;
}
reduction_dims++;
if (id->isThread()) {
continue;
}
// We always want an rfactor axis because our inlining logic expects it. If
// there's no parallelization to split out, just rfactor everything but the
// unswitch dim.
if (!(id->getParallelType() == ParallelType::Unswitch &&
id->extent()->isOneInt())) {
rfactor_axes_no_unswitch.emplace_back(axis_i);
}
rfactor_axes.emplace_back(axis_i);
}
if (reduction_dims == rfactor_axes.size()) {
return ir_utils::rfactorHelper(reference_tv, rfactor_axes_no_unswitch);
}
return ir_utils::rfactorHelper(reference_tv, rfactor_axes);
}
void projectPersistentBuffers(Fusion* fusion) {
auto persistent_info = scheduler_utils::persistentBuffers(fusion);
// Convenience accessors
const auto& persistent_buffers = persistent_info.persistent_buffers;
const auto& persistent_resolution_points =
persistent_info.persistent_buffer_resolution_points;
const auto& projected_buffers =
persistent_info.projectable_persistent_buffers;
TORCH_INTERNAL_ASSERT(persistent_buffers.size() == persistent_buffers.size());
// Iterate through projected buffers, tracking which index it corresponds too
// since there's a resolution point entry for every buffer.
for (auto buffer_i : c10::irange(persistent_buffers.size())) {
auto buffer = persistent_buffers[buffer_i];
if (std::find(projected_buffers.begin(), projected_buffers.end(), buffer) ==
projected_buffers.end()) {
continue;
}
auto resolution_points = persistent_resolution_points[buffer_i];
std::vector<Val*> persistent_use_of_buffer;
// Go through the resolution points one by one. Resolution points are points
// in which the reduction branch meets the residual branch. These are points
// where the persitent buffer may no longer be needed (one point could be
// after another, and the buffer would be needed until the last resolution
// points)
for (auto resolution_point : resolution_points) {
// Need to go through all paths from the persistent buffer to the
// resolution point
auto chains_to_resolution =
DependencyCheck::getAllDependencyChains(buffer, resolution_point);
for (auto chain : chains_to_resolution) {
auto tv_chain = ir_utils::filterByType<TensorView>(chain);
// To move the persistent buffers to the inputs, we need to recompute
// the persistent buffer for all branches that don't go through a
// reduction. If there's a reduction on the current path between the
// persistent buffer and resolution, continue, there's no need to
// replicate this use.
if (std::any_of(tv_chain.begin(), tv_chain.end(), [](TensorView* tv) {
return tv->hasReduction();
})) {
continue;
}
// Grab use of the buffer, chain[0] is the persistent buffer, chain[1]
// is its first use.
auto use = chain[1];
// Only grab unique uses, a persistent buffer could be used multiple
// times in the same expression.
if (std::find(
persistent_use_of_buffer.begin(),
persistent_use_of_buffer.end(),
use) != persistent_use_of_buffer.end()) {
continue;
}
persistent_use_of_buffer.emplace_back(use);
}
// For all uses that do not go towards the reduction operations in the
// persistent section of the graph, recompute the persistent buffer.
for (auto use : persistent_use_of_buffer) {
TORCH_INTERNAL_ASSERT(use->definition() != nullptr);
auto buffer_replicate = RecomputeTv::recompute(buffer);
ir_utils::replaceValInExpr(use->definition(), buffer, buffer_replicate);
}
}
}
}
} // namespace reduction_scheduler_utils
} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch
|