File: transpose.cpp

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (906 lines) | stat: -rw-r--r-- 35,158 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
#include <torch/csrc/jit/codegen/cuda/scheduler/transpose.h>

#include <torch/csrc/jit/codegen/cuda/executor_utils.h>
#include <torch/csrc/jit/codegen/cuda/inline_propagator.h>
#include <torch/csrc/jit/codegen/cuda/instrumentation.h>
#include <torch/csrc/jit/codegen/cuda/ir_iostream.h>
#include <torch/csrc/jit/codegen/cuda/ir_utils.h>
#include <torch/csrc/jit/codegen/cuda/lower_utils.h>
#include <torch/csrc/jit/codegen/cuda/scheduler/pointwise_utils.h>
#include <torch/csrc/jit/codegen/cuda/scheduler/registry.h>
#include <torch/csrc/jit/codegen/cuda/scheduler/utils.h>
#include <torch/csrc/jit/codegen/cuda/scheduler/vectorize_helper.h>
#include <torch/csrc/jit/codegen/cuda/transform_replay.h>
#include <torch/csrc/jit/codegen/cuda/utils.h>

#include <ATen/cuda/CUDAContext.h>

#include <algorithm>

namespace torch {
namespace jit {
namespace fuser {
namespace cuda {

namespace {

constexpr int64_t kMaxTileSize = 32;

// DomainMap uses the ComputeAtMap to find a reference TensorView
// that maps to all iterDomains in the fusion.
class DomainMap : public pointwise_utils::DomainMap {
 public:
  using pointwise_utils::DomainMap::DomainMap;

  TensorView* findReferenceFor(const std::vector<TensorView*>& group) const {
    TensorView* result = nullptr;
    int max_dims = -1;
    for (auto tv : group) {
      if (isValidReference(tv)) {
        int dims = pointwise_utils::nRootDims(tv);
        if (dims > max_dims) {
          result = tv;
          max_dims = dims;
        }
      }
    }
    return result;
  }

  static bool hasAtLeastTwoValidGroups(Fusion* fusion) {
    FusionGuard fg(fusion);
    DomainMap domain_map(fusion);
    auto grouped_inputs_outputs = domain_map.groupInputsOutputsByInnerDim();
    if (grouped_inputs_outputs.size() < 2) {
      return false;
    }
    return domain_map.findReferenceFor(grouped_inputs_outputs[0]) != nullptr &&
        domain_map.findReferenceFor(grouped_inputs_outputs[1]) != nullptr;
  }

  int getPosMappedTo(TensorView* tv, IterDomain* id) const {
    const auto& dom = tv->domain()->domain();
    for (auto i : c10::irange(dom.size())) {
      if (areExactMapped(id, tv->axis(i))) {
        return i;
      }
    }
    TORCH_INTERNAL_ASSERT(
        false, "Can not find ID mapped to ", id, " in tensor ", tv);
  }

  // Group inputs and outputs of a fusion by its inner most domain. For example
  //   inputs: t0, t1
  //   t2 = transpose(t1)
  //   t3 = t0 + t2
  //   t4 = sin(t0)
  //   t5 = cos(t1)
  //   outputs: t3, t4, t5
  //
  // Then we should have group {t0, t3, t4} and {t1, t5}
  //
  // The returned groups are sorted in descending size. If the sizes of two
  // group are equal, then we sort them by their members in the following order:
  //   output[0], output[1], ..., input[0], input[1], ...
  // That is, {ouput[0], output[2]} will be in front of {ouput[1], output[3]}
  // The order here must be deterministic, because in transpose heuristics, we
  // have `vectorize_factor1` and `vectorize_factor2` and we need to be sure
  // that `1` and `2` are assigned to the same group across runs.
  //
  // In the case where view is present in the graph, there are two cases: if the
  // view doesn't touch any inner dimension of any group, then the support of it
  // is trivial. In the case where view actually touches an inner-most dim, we
  // keep track of the inner-most dimension of view's split and merges.
  //
  // For example, if you have:
  //   T0 [2, 3, 5] <-- input
  //   T1 [2, 5, 3] <-- input
  //   T2 [2, 5, 3] = transpose(T0) + T1
  //   T3 [2, 15] = view(T2)
  //   output <-- T3
  //
  // Then T3 should be in the same group with T1, and T0 should have
  // different group with T1 and T3.
  std::vector<std::vector<TensorView*>> groupInputsOutputsByInnerDim() const {
    std::vector<std::vector<TensorView*>> groups;
    auto output_tvs = ir_utils::filterByType<TensorView>(fusion_->outputs());
    auto input_tvs = ir_utils::filterByType<TensorView>(fusion_->inputs());
    std::unordered_set<TensorView*> grouped;
    decltype(input_tvs)* tv_filtered_groups[2] = {&output_tvs, &input_tvs};
    for (auto tv_filtered_group : tv_filtered_groups) {
      for (auto tv : *tv_filtered_group) {
        if (tv->isFusionInput() && tv->uses().empty()) {
          continue;
        }
        if (grouped.count(tv) > 0) {
          continue;
        }
        groups.emplace_back(std::vector<TensorView*>{tv});
        grouped.emplace(tv);
        // We only want to grab the inner-most dimension, because we don't want
        // tensors with different inner-most dimension to be put in the same
        // group. For example, if we have:
        //   T2[i1, i3*i2] = relu(view(transpose(T1[i1, i2, i3])))
        // then we don't want T1 and T2 to be in the same group.
        //
        // But we don't want to check contiguity. For example, if we have:
        //   T1[i1, i2, i3] (contiguous) + T2[i1, i2, i3] (discontiguous)
        // Then we still want to T1 and T2 to be grouped together.
        auto group =
            scheduler_utils::getInputsOutputsWithInnerDim(tv, true, false);
        for (auto member_tv : group) {
          if (grouped.count(member_tv) == 0) {
            grouped.emplace(member_tv);
            groups.back().emplace_back(member_tv);
          } else if (member_tv != tv) {
            // Ambiguous grouping. This should only happen at `canSchedule`, so
            // we just return a null result which will tell the scheduler to
            // reject the fusion
            return {};
          }
        }
      }
    }
    std::stable_sort(
        groups.begin(),
        groups.end(),
        [](const std::vector<TensorView*>& v1,
           const std::vector<TensorView*>& v2) {
          return v1.size() > v2.size();
        });
    return groups;
  }
};

// Note: [Supporting small transpose dimensions]
// We prefer to make tiles of size 32x32 if there are enough elements to achieve
// good occupancy, otherwise, we will use tile size 8x8. In both cases, it is
// possible that the inner dimension of group 1 and/or group 2 are smaller than
// the desired tile size. If this happens, part of the threads of a block will
// be wasted, leading to bad performance. To prevent this from happening, if the
// size of the inner-most dim is smaller than the tile size, we merge other
// dimensions with the inner-most dimension to create larger "virtual inner-most
// dimension". The algorithm that we create these virtual inner-most dimensions
// is as follows:
//
// For example, if we have
//   T0[I0{2}, I1{1024*1024}, I2{2}, I3{2}, I4{2}, I5{2}, I6{2}] input
//   T1 = transpose(T0, 4, 6)
// We first try to merge each inner-most dim with the dimensions on its left:
//   T0[I0{2}, I1*I2*I3*I4{1024*1024*8}, I5*I6{4}]
// If there is/are still unsatisfied innermost dim(s) after this step (I5*I6 in
// this example), we find other dims that is not merged yet to satisfy it/them:
//   T0[I0*I5*I6{8}, I1*I2*I3*I4{1024*1024*8}]
// If after merging all the dims, there is still one of them not satisfied, this
// usually means there is one large dim that is consumed by the satisfied one.
// We will split that dim and large dim and and use the splitted ones to satisfy
// both of them:
//   T0[I0*I1o*I5*I6{1024*1024/4*8}, I1i*I2*I3*I4{32}]
void maybeBuildVirtualInnerDims(
    TransposeParams& params,
    const std::vector<int64_t>& shape_in_ref1,
    int64_t inner_most1,
    int64_t inner_most2) {
  int64_t merged_size1 = shape_in_ref1[inner_most1];
  int64_t merged_size2 = shape_in_ref1[inner_most2];

  // merge inner_most1 and inner_most2 left until we are done or we can no
  // longer do so
  int64_t dim = inner_most1 - 1;
  while (dim >= 0 && dim != inner_most2 && merged_size1 < params.tile_size1) {
    params.dims_merged_with_1.push_back(dim);
    merged_size1 *= shape_in_ref1[dim];
    dim--;
  }
  dim = inner_most2 - 1;
  while (dim >= 0 && dim != inner_most1 && merged_size2 < params.tile_size2) {
    params.dims_merged_with_2.push_back(dim);
    merged_size2 *= shape_in_ref1[dim];
    dim--;
  }
  // If any of them are unsatisfied, then find other dims to merge
  std::unordered_set<int64_t> unavailable_dims;
  unavailable_dims.reserve(
      2 + params.dims_merged_with_1.size() + params.dims_merged_with_2.size());
  unavailable_dims.insert(inner_most1);
  unavailable_dims.insert(inner_most2);
  for (auto i : params.dims_merged_with_1) {
    unavailable_dims.insert(i);
  }
  for (auto i : params.dims_merged_with_2) {
    unavailable_dims.insert(i);
  }
  dim = shape_in_ref1.size() - 1;
  while (dim >= 0 && merged_size1 < params.tile_size1) {
    if (unavailable_dims.count(dim) == 0) {
      params.dims_merged_with_1.push_back(dim);
      merged_size1 *= shape_in_ref1[dim];
      unavailable_dims.insert(dim);
    }
    dim--;
  }
  dim = shape_in_ref1.size() - 1;
  while (dim >= 0 && merged_size2 < params.tile_size2) {
    if (unavailable_dims.count(dim) == 0) {
      params.dims_merged_with_2.push_back(dim);
      merged_size2 *= shape_in_ref1[dim];
      unavailable_dims.insert(dim);
    }
    dim--;
  }
  // If both are satisfied, then we are done. If neither are satisfied, then it
  // is impossible to satisfy both of them, also done.
  if ((merged_size1 < params.tile_size1) ==
      (merged_size2 < params.tile_size2)) {
    return; // no need to split
  }
  // If one of them are not satisfied, there might be two cases:
  // 1. The satisfied one just merged in a large dim. If this is the case, We
  //    split this large dim, so that now we have two available dims to satisfy
  //    both virtual innermost dim.
  // 2. The satisfied one did not merge in anything. For example,
  //    T0[I0{1024*1024}, I1{2}]
  int64_t large_dim;
  int64_t split_factor;
  if (merged_size1 < params.tile_size1) {
    if (params.dims_merged_with_2.empty()) {
      // case 2
      return;
    }
    large_dim = params.dims_merged_with_2.back();
    split_factor = ceilDiv(params.tile_size1, merged_size1);
  } else {
    if (params.dims_merged_with_1.empty()) {
      // case 2
      return;
    }
    large_dim = params.dims_merged_with_1.back();
    split_factor = ceilDiv(params.tile_size2, merged_size2);
  }
  params.split_before_tiling.push_back({large_dim, split_factor});
  // adjust all dims to after-split
  for (auto& i : params.dims_merged_with_1) {
    if (i > large_dim) {
      i++;
    }
  }
  for (auto& i : params.dims_merged_with_2) {
    if (i > large_dim) {
      i++;
    }
  }
  // Give the split-out dim to the unsatisfied one, so that both are satisfied.
  if (merged_size1 < params.tile_size1) {
    params.dims_merged_with_2.pop_back();
    params.dims_merged_with_2.push_back(large_dim + 1);
    params.dims_merged_with_1.push_back(large_dim);
  } else {
    params.dims_merged_with_1.pop_back();
    params.dims_merged_with_1.push_back(large_dim + 1);
    params.dims_merged_with_2.push_back(large_dim);
  }
}

} // namespace

bool hasAtLeastTwoValidGroups(Fusion* fusion) {
  return DomainMap::hasAtLeastTwoValidGroups(fusion);
}

std::shared_ptr<TransposeParams> getTransposeHeuristics(
    Fusion* fusion,
    const at::ArrayRef<c10::IValue>& runtime_inputs,
    HeuristicSummary* data_cache) {
  SchedulerRuntimeInfo runtime_info(fusion, runtime_inputs, true);
  return getTransposeHeuristics(fusion, runtime_info, data_cache);
}

std::shared_ptr<TransposeParams> getTransposeHeuristics(
    Fusion* fusion,
    SchedulerRuntimeInfo& runtime_info,
    HeuristicSummary* data_cache) {
  FUSER_PERF_SCOPE("getTransposeHeuristics");

  FusionGuard fg(fusion);

  // Incase any buffer is of type DataType::Index
  DataType index_type = indexModeToDtype(runtime_info.getIndexMode());

  auto domain_map_entry =
      HeuristicSummaryEntry<HeuristicCompileTime::DomainMap>(
          data_cache,
          [fusion]() { return std::make_unique<DomainMap>(fusion); });
  const auto& domain_map = dynamic_cast<DomainMap&>(domain_map_entry.get());

  auto grouped_inputs_outputs_entry =
      HeuristicSummaryEntry<HeuristicCompileTime::InputsOutputsInnerDimGroups>(
          data_cache, [&domain_map]() {
            return std::make_unique<std::vector<std::vector<TensorView*>>>(
                domain_map.groupInputsOutputsByInnerDim());
          });
  auto grouped_inputs_outputs = grouped_inputs_outputs_entry.get();

  TORCH_INTERNAL_ASSERT(
      grouped_inputs_outputs.size() >= 2,
      "Can not find mismatched inner most dim, should use pointwise scheduler.");

  auto reference_tensors_entry =
      HeuristicSummaryEntry<HeuristicCompileTime::ReferenceTensors>(
          data_cache, [&domain_map, &grouped_inputs_outputs]() {
            std::vector<TensorView*> data{
                domain_map.findReferenceFor(grouped_inputs_outputs[0]),
                domain_map.findReferenceFor(grouped_inputs_outputs[1])};
            return std::make_unique<std::vector<TensorView*>>(std::move(data));
          });
  auto& reference_tensors = reference_tensors_entry.get();
  TORCH_INTERNAL_ASSERT(reference_tensors.size() == 2);
  TensorView* reference1 = reference_tensors[0];
  TensorView* reference2 = reference_tensors[1];
  TORCH_INTERNAL_ASSERT(
      reference1 != nullptr, "Unable to find reference tensor for group 1");
  TORCH_INTERNAL_ASSERT(
      reference2 != nullptr, "Unable to find reference tensor for group 2");

  const int64_t device_multiprocessor_count =
      (int64_t)at::cuda::getCurrentDeviceProperties()->multiProcessorCount;

  auto ref_root = reference1->getMaybeRFactorDomain();
  std::vector<int64_t> shape_in_ref1;
  shape_in_ref1.reserve(reference1->nDims());
  int64_t n_elems = 1;
  for (size_t ref_i = 0; ref_i < ref_root.size(); ref_i++) {
    auto id = ref_root[ref_i];
    auto concrete_id = domain_map.getComputeAtMap().getConcreteMappedID(
        id, IdMappingMode::EXACT);
    auto inferred_val =
        runtime_info.expressionEvaluator().evaluate(concrete_id->extent());
    TORCH_INTERNAL_ASSERT(
        inferred_val.has_value(),
        "Error inferring size for pointwise scheduler: ",
        ref_root[ref_i]->extent()->toInlineString());
    int64_t size = inferred_val->as<int64_t>();
    n_elems *= size;
    shape_in_ref1.push_back(size);
  }

  auto params = std::make_shared<TransposeParams>("Transpose heuristics");

  // If the problem size is small use small tile sizes.
  if (n_elems < device_multiprocessor_count * kMaxTileSize * kMaxTileSize) {
    params->tile_size1 = 8;
    params->tile_size2 = 8;
    // TODO: I was trying the following but I got silent wrong result
    // params->tile_size1 = 8;
    // params->tile_size2 = 4;
    // This should not happen, because the correctness should be irrevalent to
    // schedulers. We don't have to use tile size (8, 4), but we need to fix our
    // bug in codegen.
  }

  // Expand inner-most dims to virtual inner-most dims so that the inner-most
  // dims has at least tile_size elements
  auto inner_most_id1 = scheduler_utils::innerMostRootDim(reference1);
  auto inner_most_id2 = scheduler_utils::innerMostRootDim(reference2);

  auto inner_most_pos1_in_ref1 =
      domain_map.getPosMappedTo(reference1, inner_most_id1);
  auto inner_most_pos2_in_ref1 =
      domain_map.getPosMappedTo(reference1, inner_most_id2);

  // See note [Supporting small transpose dimensions]
  maybeBuildVirtualInnerDims(
      *params, shape_in_ref1, inner_most_pos1_in_ref1, inner_most_pos2_in_ref1);

  // Note [vectorization and unroll of input and output]
  //
  // The choice of vectorization size, block size and tile sizes needs to be
  // consistent with each other. Consider the following:
  //
  // The number of threads in one block is
  //   num_threads = blockDim.x * blockDim.y
  // and the number of elements per each tile is
  //   num_elems_per_tile = params->tile_size1 * params->tile_size2
  // So each thread needs to process
  //   num_elems_per_thread = num_elems_per_tile / num_threads
  // elements. That is, once the tile sizes and block size are determined, the
  // `num_elems_per_thread` is determined, regardless of vectorizability of
  // input/output tensors.
  //
  // To make the selection of tile sizes othogonal to vectorizability, we
  // support having both vectorization and unrolling in the same tensor. For
  // example, if we have num_elems_per_tile == 1024 and num_threads = 256, then
  // we have num_elems_per_thread being 4. And if we have vector size 2, then we
  // will do unroll 2 * vectorize 2 at the same tensor.
  //
  // Also, since the inner most dim of different groups are not the same, it is
  // natural to consider their vectorizability separately and allow them to have
  // different vectorize/unroll sizes.

  constexpr int64_t kSixteen = 16; // clang tidy

  int64_t max_input_dtype_size = 1;

  size_t n_input_tensors = 0;
  for (auto inp : ir_utils::filterByType<TensorView>(fusion->inputs())) {
    max_input_dtype_size = std::max(
        max_input_dtype_size,
        (int64_t)dataTypeSize(inp->getDataType().value(), index_type));
    n_input_tensors++;
  }

  auto max_unroll_factor = ceilDiv(
      // Available unrolling based on size of data type
      (int64_t)kSixteen / max_input_dtype_size,
      // Reduce max unrolling factor if we have many inputs/outputs to unroll
      // as it could start consuming a lot of registers.
      std::max(
          (scheduler_utils::lastPow2(
               (int64_t)grouped_inputs_outputs[0].size() +
               (int64_t)grouped_inputs_outputs[1].size()) >>
           2),
          (int64_t)1));

  // Don't unroll at the cost of getting a full wave on the GPU
  auto max_unroll_factor_occupancy = ceilDiv(
      n_elems,
      device_multiprocessor_count * params->tile_size1 * params->tile_size2);
  max_unroll_factor = std::min(max_unroll_factor, max_unroll_factor_occupancy);

  // Don't unroll at the cost of getting a full warp, useful for the case where
  // tile sizes are small
  auto max_unroll_factor_block =
      ceilDiv(params->tile_size1 * params->tile_size2, 32);
  max_unroll_factor = std::min(max_unroll_factor, max_unroll_factor_block);

  // Compute maximum vectorize factor that can be used
  size_t vectorize_factor1 = max_unroll_factor;
  size_t vectorize_factor2 = max_unroll_factor;

  for (auto tv : grouped_inputs_outputs[0]) {
    const auto tv_vectorize_factor =
        runtime_info.getInnerDimVectorizableWidth(tv);
    vectorize_factor1 = std::min(vectorize_factor1, tv_vectorize_factor);
  }
  // TODO: Since group2 only has global->shared and shared->global set op, we
  // can have fine-grained control of unroll/vectorization at per tensor level.
  // We should not be using a single global vectorize factor for the entire
  // group 2
  for (auto tv : grouped_inputs_outputs[1]) {
    const auto tv_vectorize_factor =
        runtime_info.getInnerDimVectorizableWidth(tv);
    vectorize_factor2 = std::min(vectorize_factor2, tv_vectorize_factor);
  }

  params->vectorize_factor1 = scheduler_utils::lastPow2(
      std::min(static_cast<size_t>(max_unroll_factor), vectorize_factor1));
  params->vectorize_factor2 = scheduler_utils::lastPow2(
      std::min(static_cast<size_t>(max_unroll_factor), vectorize_factor2));

  params->lparams.bind(params->getThreadsPerBlock(), ParallelType::TIDx);

  if (isDebugDumpEnabled(DebugDumpOption::SchedulerDebug)) {
    std::cerr << "\n===== Transpose Stats ========\n"
              << "inputs: " << ir_utils::toString(fusion->inputs()) << "\n"
              << "outputs: " << ir_utils::toString(fusion->outputs()) << "\n"
              << "num_elems: " << n_elems << "\n"
              << "n_input_tensors: " << n_input_tensors << "\n"
              << "max_input_dtype_size: " << max_input_dtype_size << "\n"
              << "group 1: " << ir_utils::toString(grouped_inputs_outputs[0])
              << "\n"
              << "group 2: " << ir_utils::toString(grouped_inputs_outputs[1])
              << std::endl;
    if (!params->split_before_tiling.empty() ||
        !params->dims_merged_with_1.empty() ||
        !params->dims_merged_with_2.empty()) {
      std::cerr << "small transposed dim, needs virtual inner-most dim"
                << std::endl;
    }
    std::cerr << std::endl;
    std::cerr << params->toString() << std::endl;
  }

  return params;
}

// TODO: remove or return launch parameters
LaunchParams scheduleTranspose(
    Fusion* fusion,
    const at::ArrayRef<c10::IValue>& runtime_inputs) {
  FUSER_PERF_SCOPE("scheduleFusion");
  auto params = getTransposeHeuristics(fusion, runtime_inputs);
  TORCH_INTERNAL_ASSERT(
      params != nullptr, "Could not schedule transpose operation.");
  scheduleTranspose(fusion, *params);
  return params->lparams;
}

void scheduleTranspose(Fusion* fusion, TransposeParams params) {
  FusionGuard fg(fusion);

  // Make sure we don't have global memory set on intermediate tensors from
  // fusion segmentation
  scheduler_utils::clearMemorySpace(fusion);

  // maybe has_reduction for scheduling should be done on a per output tensor
  // basis.
  // TODO: add support for trivial reduction
  TORCH_INTERNAL_ASSERT(
      ir_utils::getReductionOps(fusion, /*ignore_trivial=*/false).empty(),
      "This scheduler only handles pointwise ops.");

  // Cache inputs
  auto cached_inputs = scheduler_utils::cacheInputs(fusion, true);

  // Cache and fork outputs
  auto cached_outputs = scheduler_utils::cacheAndForkOutputs(fusion, true);

  std::vector<TensorView*> input_tvs;
  {
    auto filtered_tvs = ir_utils::filterByType<TensorView>(fusion->inputs());
    // Remove hanging tensor views
    for (auto tv : filtered_tvs) {
      if (tv->uses().empty()) {
        continue;
      }
      input_tvs.push_back(tv);
    }
  }
  auto output_tvs = ir_utils::filterByType<TensorView>(fusion->outputs());

  size_t max_dims = 0;
  for (auto inp : input_tvs) {
    max_dims = std::max(pointwise_utils::nRootDims(inp), max_dims);
  }

  for (auto out : output_tvs) {
    max_dims = std::max(pointwise_utils::nRootDims(out), max_dims);
  }

  // If everything is zero dim tensors, just return.
  if (max_dims == 0) {
    return;
  }

  DomainMap domain_map(fusion);
  auto grouped_inputs_outputs = domain_map.groupInputsOutputsByInnerDim();
  TORCH_INTERNAL_ASSERT(grouped_inputs_outputs.size() >= 2);

  // We need something similar to `cacheFork` for input tensors in group 2. We
  // need this because we will want to propagate to the entire DAG except group
  // 2 and its cached inputs, so we need to make sure the DAG is still connected
  // if we remove group and its cached inputs. For example
  //    t0
  //    |
  //   cache
  //   |  |
  //  t1  t2
  // if groups = {{t1, t2}, {t0}}, then removing {t0, cache} from the DAG will
  // make it disconnected.
  std::unordered_set<TensorView*> group2_and_cached_inputs(
      grouped_inputs_outputs[1].begin(), grouped_inputs_outputs[1].end());
  for (auto tv : grouped_inputs_outputs[1]) {
    if (tv->isFusionInput()) {
      auto existing_cache = ir_utils::consumerTvsOf(tv)[0];
      if (ir_utils::consumerTvsOf(existing_cache).size() > 1) {
        auto new_cache = tv->cacheAfter();
        new_cache->setMemoryType(MemoryType::Shared);
        group2_and_cached_inputs.emplace(new_cache);
      } else {
        existing_cache->setMemoryType(MemoryType::Shared);
        group2_and_cached_inputs.emplace(existing_cache);
      }
    }
  }
  // set cached outputs of group 2 to shared memory
  for (auto pair : cached_outputs) {
    auto cached_output = pair.first;
    auto output = pair.second;
    if (group2_and_cached_inputs.count(output) > 0) {
      cached_output->setMemoryType(MemoryType::Shared);
    }
  }

  TensorView* reference1 =
      domain_map.findReferenceFor(grouped_inputs_outputs[0]);
  TensorView* reference2 =
      domain_map.findReferenceFor(grouped_inputs_outputs[1]);

  TORCH_INTERNAL_ASSERT(
      reference1 != nullptr,
      "Could not find a fully broadcasted tensor to reference schedule on the first group.");

  TORCH_INTERNAL_ASSERT(
      reference2 != nullptr,
      "Could not find a fully broadcasted tensor to reference schedule on the second group.");

  auto inner_most_id1 = scheduler_utils::innerMostRootDim(reference1);
  auto inner_most_id2 = scheduler_utils::innerMostRootDim(reference2);

  //////////////////////////////////////////
  // Step 1: Make virtual inner most dims //
  //////////////////////////////////////////

  // See note [Supporting small transpose dimensions]

  // split big dims so that we have enough dimensions available to merge with
  // inner-most dims to create the virtual inner-most dim
  scheduler_utils::splitDims(reference1, params.split_before_tiling);
  // Merging reference 1's dims_merged_with_1 but updating dims_merged_with_2
  // based on the changes in the dimensions that were merged. So we can then run
  // merge with dims_merged_with_2.
  auto merged1 = scheduler_utils::mergeDims(
      reference1, params.dims_merged_with_1, params.dims_merged_with_2);
  // Merging reference 1's dims_merged_with_2 and updating `merged1`.
  std::vector<size_t> merged1_vec;
  if (merged1.has_value()) {
    merged1_vec.push_back(*merged1);
  }
  auto merged2 = scheduler_utils::mergeDims(
      reference1, params.dims_merged_with_2, merged1_vec);
  if (merged1.has_value()) {
    merged1 = merged1_vec[0];
  }

  // merge with inner most dims to get virtual inner most dims
  size_t inner_most_pos1_in_ref1 =
      domain_map.getPosMappedTo(reference1, inner_most_id1);
  size_t inner_most_pos2_in_ref1 =
      domain_map.getPosMappedTo(reference1, inner_most_id2);
  if (merged1.has_value()) {
    if (inner_most_pos1_in_ref1 < *merged1) {
      reference1->reorder(
          {{*merged1, inner_most_pos1_in_ref1},
           {inner_most_pos1_in_ref1, *merged1}});
      std::swap(*merged1, inner_most_pos1_in_ref1);
    }
    if (inner_most_pos2_in_ref1 > inner_most_pos1_in_ref1) {
      inner_most_pos2_in_ref1--;
    }
    if (merged2.has_value() && *merged2 > inner_most_pos1_in_ref1) {
      (*merged2)--;
    }
    reference1->merge(*merged1, inner_most_pos1_in_ref1);
    inner_most_pos1_in_ref1 = *merged1;
  }
  if (merged2.has_value()) {
    if (inner_most_pos2_in_ref1 < *merged2) {
      reference1->reorder(
          {{*merged2, inner_most_pos2_in_ref1},
           {inner_most_pos2_in_ref1, *merged2}});
      std::swap(*merged2, inner_most_pos2_in_ref1);
    }
    if (inner_most_pos1_in_ref1 > inner_most_pos2_in_ref1) {
      inner_most_pos1_in_ref1--;
    }
    reference1->merge(*merged2, inner_most_pos2_in_ref1);
    inner_most_pos2_in_ref1 = *merged2;
  }

  /////////////////////////////
  // Step 2: global schedule //
  /////////////////////////////

  // make tile
  // [..., I1, .., I2, ...]
  reference1->split(inner_most_pos1_in_ref1, params.tile_size1);
  reference1->reorder({{inner_most_pos1_in_ref1 + 1, -1}});
  reference1->split(inner_most_pos2_in_ref1, params.tile_size2);
  reference1->reorder({{inner_most_pos2_in_ref1 + 1, -1}});
  // [..., I1/tile1, .., I2/tile2, ..., tile1, tile2]

  // Merge remaining dimensions
  int lhs_i = -1;
  for (int i = (int)reference1->nDims() - 2; i > 0; i--) {
    auto axis_i = i - 1;
    if (lhs_i == -1) {
      lhs_i = axis_i;
    } else {
      reference1->merge(axis_i, lhs_i);
      lhs_i = axis_i;
    }
  }
  reference1->split(0, 1);
  // [merged_dim, 1, tile1, tile2]

  // parallelize non-tile dimensions
  reference1->axis(1)->parallelize(ParallelType::Unswitch);
  reference1->axis(0)->parallelize(ParallelType::BIDx);
  // [BIDx, Unswitch, tile1, tile2]

  // Propagate transformations so far to the entire DAG
  TransformPropagator propagator(reference1);
  MaxRootDomainInfoSpanningTree entire_dag(reference1);
  entire_dag.traverse(&propagator);
  scheduler_utils::parallelizeAllLike(reference1);

  // For a transpose scheduling, all we need is to bind threadIdx.x differently
  // for inputs and outputs. This swap of binding could happen at any tensor on
  // the path from input to output, especially, it does not have to be in the
  // transpose tensor. Here, we naively do the binding swap at cached
  // input/output for simplicity. We might need to find a better set of swap
  // tensors in the future to reduce shared memory usage.

  //////////////////////////////
  // Step 3: Schedule group 2 //
  //////////////////////////////

  // transform tile for vectorization/unroll
  // See note [vectorization and unroll of input and output]

  int pos = reference2->nDims() - 2;
  // [..., tile1, tile2]
  reference2->merge(pos);
  reference2->split(pos, params.vectorize_factor2);
  reference2->split(pos, params.getThreadsPerBlock());
  // [..., Unroll, TIDx, Vectorize]

  // Propagate transformations of reference2 to the entire DAG except
  // group 1. We actually only want to propagate to the fusion outputs, but
  // inputs and outputs themselves are disconnected, so we have to borrow the
  // entire DAG and use its spanning tree.
  {
    auto all_tvs_except1 = ir_utils::allTvsExcept(
        fusion,
        {grouped_inputs_outputs[0].begin(), grouped_inputs_outputs[0].end()});
    SetSelector selector({all_tvs_except1.begin(), all_tvs_except1.end()});
    MaxRootDomainInfoSpanningTree entire_dag_except1(reference2, &selector);
    TransformPropagator propagator(reference2);
    entire_dag_except1.traverse(&propagator);
  }

  // parallelize group2 and its cached inputs
  {
    if (params.vectorize_factor2 > 1) {
      reference2->axis(-1)->parallelize(ParallelType::Vectorize);
    }
    reference2->axis(-2)->parallelize(ParallelType::TIDx);
    reference2->axis(-3)->parallelize(ParallelType::Unroll);

    ComputeAtMap ca_map(fusion);

    scheduler_utils::parallelizeAllLike(
        reference2,
        {group2_and_cached_inputs.begin(), group2_and_cached_inputs.end()},
        {ParallelType::TIDx});

    // Only vectorize the axes that exactly maps to the vectorized axes
    //  on reference as support for permissively mapped axes are not
    //  yet clearly defined.
    std::vector<TensorView*> vectorized_group2_cached_inputs;
    for (auto gin : group2_and_cached_inputs) {
      if (std::any_of(
              gin->domain()->domain().begin(),
              gin->domain()->domain().end(),
              [&ca_map, reference2](IterDomain* id) {
                return ca_map.areMapped(
                    id, reference2->axis(-1), IdMappingMode::EXACT);
              })) {
        vectorized_group2_cached_inputs.push_back(gin);
      }
    }
    scheduler_utils::parallelizeAllLike(
        reference2, vectorized_group2_cached_inputs, {ParallelType::Vectorize});

    // Only unroll the axes that exactly maps to the unrolled axes
    //  on reference as support for permissively mapped axes are not
    //  yet clearly defined.
    std::vector<TensorView*> unrolled_group2_cached_inputs;
    for (auto gin : group2_and_cached_inputs) {
      if (std::any_of(
              gin->domain()->domain().begin(),
              gin->domain()->domain().end(),
              [&ca_map, reference2](IterDomain* id) {
                return ca_map.areMapped(
                    id, reference2->axis(-3), IdMappingMode::EXACT);
              })) {
        unrolled_group2_cached_inputs.push_back(gin);
      }
    }
    scheduler_utils::parallelizeAllLike(
        reference2, unrolled_group2_cached_inputs, {ParallelType::Unroll});
  }

  //////////////////////////////
  // Step 4: Schedule group 1 //
  //////////////////////////////

  // schedule group 1
  reference1->reorder({{-2, -1}});
  // [..., tile2, tile1]
  pos = reference1->nDims() - 2;
  reference1->merge(pos);
  reference1->split(pos, params.vectorize_factor1);
  reference1->split(pos, params.getThreadsPerBlock());
  if (params.vectorize_factor1 > 1) {
    reference1->axis(-1)->parallelize(ParallelType::Vectorize);
  }
  reference1->axis(-2)->parallelize(ParallelType::TIDx);
  reference1->axis(-3)->parallelize(ParallelType::Unroll);
  // [..., Unroll, TIDx, Vectorize]

  // Propagate transformations, parallelization of the reference1 to the entire
  // DAG except group 2 and its corresponding cached outputs.
  {
    auto all_tvs_except2 =
        ir_utils::allTvsExcept(fusion, group2_and_cached_inputs);
    SetSelector selector({all_tvs_except2.begin(), all_tvs_except2.end()});
    MaxRootDomainInfoSpanningTree entire_dag_except_outputs(
        reference1, &selector);
    TransformPropagator propagator(reference1);
    entire_dag_except_outputs.traverse(&propagator);
    scheduler_utils::parallelizeAllLike(
        reference1, all_tvs_except2, {ParallelType::TIDx});
  }

  // vectorize and unroll group 1's output and cached input
  {
    ComputeAtMap ca_map(fusion);
    std::vector<TensorView*> group1_and_cached_inputs(
        grouped_inputs_outputs[0].begin(), grouped_inputs_outputs[0].end());
    for (auto tv : grouped_inputs_outputs[0]) {
      if (tv->isFusionInput()) {
        group1_and_cached_inputs.emplace_back(ir_utils::consumerTvsOf(tv)[0]);
      }
    }

    // Only vectorize the axes that exactly maps to the vectorized axes
    //  on reference as support for permissively mapped axes are not
    //  yet clearly defined.
    std::vector<TensorView*> vectorized_group1_cached_inputs;
    for (auto gin : group1_and_cached_inputs) {
      if (std::any_of(
              gin->domain()->domain().begin(),
              gin->domain()->domain().end(),
              [&ca_map, reference1](IterDomain* id) {
                return ca_map.areMapped(
                    id, reference1->axis(-1), IdMappingMode::EXACT);
              })) {
        vectorized_group1_cached_inputs.push_back(gin);
      }
    }
    scheduler_utils::parallelizeAllLike(
        reference1, vectorized_group1_cached_inputs, {ParallelType::Vectorize});

    // Only unroll the axes that exactly maps to the unrolled axes
    //  on reference as support for permissively mapped axes are not
    //  yet clearly defined.
    std::vector<TensorView*> unrolled_group1_cached_inputs;
    for (auto gin : group1_and_cached_inputs) {
      if (std::any_of(
              gin->domain()->domain().begin(),
              gin->domain()->domain().end(),
              [&ca_map, reference1](IterDomain* id) {
                return ca_map.areMapped(
                    id, reference1->axis(-3), IdMappingMode::EXACT);
              })) {
        unrolled_group1_cached_inputs.push_back(gin);
      }
    }
    scheduler_utils::parallelizeAllLike(
        reference1, unrolled_group1_cached_inputs, {ParallelType::Unroll});
  }

  ////////////////////////////////
  // Step 5: Cleanup and inline //
  ////////////////////////////////

  // cleanup parallelization from reference1 and reference2 if they are fusion
  // inputs
  for (auto tv : {reference1, reference2}) {
    if (tv->isFusionInput()) {
      for (auto id : tv->domain()->domain()) {
        id->parallelize(ParallelType::Serial);
      }
    }
  }

  // Inline
  InlinePropagator inline_propagator(
      reference1, -1, ComputeAtMode::MostInlined);
  entire_dag.traverse(&inline_propagator);
}

} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch