1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
|
#include <torch/csrc/jit/codegen/cuda/transform_iter.h>
#include <c10/util/irange.h>
#include <torch/csrc/jit/codegen/cuda/ir_utils.h>
namespace torch {
namespace jit {
namespace fuser {
namespace cuda {
// Transform dispatch
void ReplayTransformations::handle(Expr* e) {
switch (e->getExprType().value()) {
case (ExprType::Split):
case (ExprType::Merge):
case (ExprType::Swizzle2D):
break;
default:
TORCH_INTERNAL_ASSERT(
false, "Invalid expr type found in transform traversal.");
}
IterVisitor::handle(e);
}
// We're going to replay this split operation on the corresponding ID
void ReplayTransformations::handle(Split* s) {
// Grab our input to the split node
auto id_in = s->in();
// Make sure we have a corresponding entry in our map pointing to the ID we're
// going to replay the split on
auto it = id_map_.find(id_in);
if (it == id_map_.end()) {
if (error_on_failure_) {
TORCH_INTERNAL_ASSERT(
false, "Transform traversal failed, dependencies not met.");
} else {
return;
}
}
auto mapped = (*it).second;
// Make sure this ID is a leaf ID (meaning it has no uses we generated)
TORCH_INTERNAL_ASSERT(
leaf_ids_.find(mapped) != leaf_ids_.end(),
"Transform traversal failed, modified a node but it was not a leaf node.");
// Replay the split onto mapped
auto outs = IterDomain::split(
mapped, s->factor(), s->innerSplit(), s->startOffset(), s->stopOffset());
// Remove mapped from the leaf IDs
leaf_ids_.erase(mapped);
// Add outputs to leaf IDs
leaf_ids_[outs.first] = counter++;
leaf_ids_[outs.second] = counter++;
// Update our ID map to include these outputs
id_map_[s->outer()] = outs.first;
id_map_[s->inner()] = outs.second;
}
// We're going to replay this merge operation on the corresponding IDs
void ReplayTransformations::handle(Merge* m) {
// Grab the inputs to the merge node
auto id_outer = m->outer();
auto id_inner = m->inner();
// Make sure we have a corresponding entry in our map pointing to the IDs
// we're going to replay the merge on
auto it_outer = id_map_.find(id_outer);
auto it_inner = id_map_.find(id_inner);
const bool outer_found = it_outer != id_map_.end();
const bool outer_bcast = id_outer->isBroadcast();
const bool inner_found = it_inner != id_map_.end();
const bool inner_bcast = id_inner->isBroadcast();
// If either are not found
if (!outer_found || !inner_found) {
// If both aren't found, it's a failure
// If outer is found && inner is bcast it is not a failure
// If inner is found && outer is bcast it is not a failure
if (!(outer_found || inner_found) || (outer_found && !inner_bcast) ||
(inner_found && !outer_bcast)) {
if (error_on_failure_) {
TORCH_INTERNAL_ASSERT(
false, "Transform traversal failed, dependencies not met.");
} else {
return;
}
}
}
// If we merge a broadcast dim with a non-broadcast dim, just remap the output
// to the non-broadcast dim.
if (inner_found && !outer_found && outer_bcast) {
id_map_[m->out()] = it_inner->second;
return;
}
if (outer_found && !inner_found && inner_bcast) {
id_map_[m->out()] = it_outer->second;
return;
}
// Grab the IDs we're going to replay this merge on
const auto id_outer_mapped = it_outer->second;
const auto id_inner_mapped = it_inner->second;
// Make sure these IDs are leaf IDs (meaning they have no uses we generated)
TORCH_INTERNAL_ASSERT(
leaf_ids_.find(id_outer_mapped) != leaf_ids_.end() &&
leaf_ids_.find(id_inner_mapped) != leaf_ids_.end(),
"Transform traversal failed, tried to replay with ",
id_outer_mapped,
" and ",
id_inner_mapped,
" however one or both are not leaf nodes.");
// Replay the merge operation
auto out = IterDomain::merge(id_outer_mapped, id_inner_mapped);
// Remove inputs from the leaf IDs
leaf_ids_.erase(id_outer_mapped);
leaf_ids_.erase(id_inner_mapped);
// Add the output to the leaf IDs
leaf_ids_[out] = counter++;
// Update our ID map with the replayed output
id_map_[m->out()] = out;
}
void ReplayTransformations::handle(Swizzle2D* swizzle_2d) {
// Grab our input to the split node
auto id_in_x = swizzle_2d->inX();
auto id_in_y = swizzle_2d->inY();
// Make sure we have a corresponding entry in our map pointing to the ID we're
// going to replay the split on
auto it_x = id_map_.find(id_in_x);
auto it_y = id_map_.find(id_in_y);
if (it_x == id_map_.end() || it_y == id_map_.end()) {
if (error_on_failure_) {
TORCH_INTERNAL_ASSERT(
false, "Transform traversal failed, dependencies not met.");
} else {
return;
}
}
auto mapped_x = (*it_x).second;
auto mapped_y = (*it_y).second;
// Make sure this ID is a leaf ID (meaning it has no uses we generated)
TORCH_INTERNAL_ASSERT(
leaf_ids_.find(mapped_x) != leaf_ids_.end() &&
leaf_ids_.find(mapped_y) != leaf_ids_.end(),
"Transform traversal failed, modified a node but it was not a leaf node.");
auto outs = std::make_pair(mapped_x, mapped_y);
if (replay_swizzle_) {
// Replay the split onto mapped
outs = IterDomain::swizzle(swizzle_2d->swizzleType(), mapped_x, mapped_y);
// Remove mapped from the leaf IDs
leaf_ids_.erase(mapped_x);
leaf_ids_.erase(mapped_y);
}
// Add outputs to leaf IDs
leaf_ids_[outs.first] = counter++;
leaf_ids_[outs.second] = counter++;
// Update our ID map to include these outputs
id_map_[swizzle_2d->outX()] = outs.first;
id_map_[swizzle_2d->outY()] = outs.second;
}
ReplayTransformations::ReplayTransformations(
const std::vector<IterDomain*>& _target_domain,
std::unordered_map<IterDomain*, IterDomain*> _id_map,
bool _error_on_failure,
bool replay_swizzle)
: target_domain_(_target_domain),
id_map_(std::move(_id_map)),
error_on_failure_(_error_on_failure),
replay_swizzle_(replay_swizzle) {
// Make sure id_map has all the inputs needed to replay target_domain
auto inps = IterVisitor::getInputsTo(
std::vector<Val*>(target_domain_.begin(), target_domain_.end()));
if (error_on_failure_)
std::for_each(inps.begin(), inps.end(), [this](Val* val) {
TORCH_INTERNAL_ASSERT(
val->getValType().value() == ValType::IterDomain,
"Expected IterDomain only for Replay Transformations, but found ",
val);
IterDomain* id = val->as<IterDomain>();
TORCH_INTERNAL_ASSERT(
id_map_.find(id) != id_map_.end(),
"Could not find required input: ",
id,
" in provided id_map.");
});
// Set all the leaf nodes for tracking, all ids start as a leaf and will be
// updated based on the transformations
for (auto entry : id_map_)
leaf_ids_[entry.second] = counter++;
}
// Replays outputs that were generated from ids.first on ids.second
void ReplayTransformations::runReplay() {
TORCH_INTERNAL_ASSERT(
!ran_replay,
"Cannot run replay twice without creating a new Replay Class.");
ran_replay = true;
if (target_domain_.empty() || id_map_.empty())
return;
// Switch outDomain to a vector to start the traversal
std::vector<Val*> traversal_vals(
target_domain_.begin(), target_domain_.end());
traverseFrom(traversal_vals[0]->fusion(), traversal_vals);
if (error_on_failure_)
TORCH_INTERNAL_ASSERT(
leaf_ids_.size() >= target_domain_.size(),
"Transform traversal failed, did not find enough output IterDomains.");
// Validate replay
for (auto out : target_domain_) {
auto it_replayed = id_map_.find(out);
if (it_replayed == id_map_.end()) {
if (error_on_failure_) {
TORCH_INTERNAL_ASSERT(
false,
"Transform traversal failed, could not find expected output.");
}
continue;
}
auto id_replayed = (*it_replayed).second;
auto it_leaf = leaf_ids_.find(id_replayed);
TORCH_INTERNAL_ASSERT(
it_leaf != leaf_ids_.end(),
"Transform Traversal failed, expected a replayed dim for ",
out,
" but one was not created.");
}
// Populate leaf_vec_ in a deterministic manner. This is deterministic
// because size_t in leaf_ids is filled based on operation order.
std::set<std::pair<IterDomain*, size_t>, id_int_lt> ordered_set;
for (auto entry : leaf_ids_)
ordered_set.emplace(entry);
leaf_vec_.clear();
leaf_vec_.resize(ordered_set.size());
std::transform(
ordered_set.begin(),
ordered_set.end(),
leaf_vec_.begin(),
[](std::pair<IterDomain*, size_t> entry) { return entry.first; });
}
BestEffortReplay::BestEffortReplay(
const std::vector<IterDomain*>& replay_domain,
const std::vector<IterDomain*>& target_domain,
std::unordered_map<IterDomain*, IterDomain*> target2replay_map,
std::unordered_map<IterDomain*, IterDomain*> replay_forward_id_map,
std::unordered_map<IterDomain*, IterDomain*> target_forward_id_map,
bool skip_swizzle)
: target2replay_id_map_(std::move(target2replay_map)),
replay_forward_id_map_(std::move(replay_forward_id_map)),
target_forward_id_map_(std::move(target_forward_id_map)),
skip_swizzle_(skip_swizzle) {
for (auto entry : target2replay_id_map_) {
leaf_ids_[entry.second] = counter++;
}
// Grab expr history of iter domains in target_domain
std::vector<Expr*> target_exprs = StmtSort::getExprs(
FusionGuard::getCurFusion(),
std::vector<Val*>(target_domain.begin(), target_domain.end()));
// If we check how an IterDomain was generated, it should only use an
// IterDomain in an expression once. We pull a map from the input
// IterDomains to the expression consuming them to generate the
// replay_domain domain. This will be used to propagate the target_domain to
// replay_domain map.
// Map replay domain's IterDomains to the Exprs they're used in
std::vector<Expr*> replay_exprs = StmtSort::getExprs(
FusionGuard::getCurFusion(),
std::vector<Val*>(replay_domain.begin(), replay_domain.end()));
// Track which id's in replay have to be replayed to guarantee rfactor
// transformations. The iteration domains in the rfactor axes don't have
// to be used in a matching expression in target, so we want to exclude those.
// Only the iteration domains [root_domains, rfactor) domains have to be used
// in matching transformation to guarantee rfactor domain is consistent.
// However, if any rfactor id was used to produce the rfactor domain, we need
// transformations on them to match the target exactly.
std::unordered_set<IterDomain*> replay_rfactor_ids;
// Track which expressions iteration domains are used, they should only be
// used in one expression.
std::unordered_map<IterDomain*, Expr*> replay_id2expr_map;
for (auto replay_expr : replay_exprs) {
for (auto id : ir_utils::filterByType<IterDomain>(replay_expr->inputs())) {
TORCH_INTERNAL_ASSERT(
replay_id2expr_map.find(id) == replay_id2expr_map.end(),
"Error trying to map rfactor root domain during replay.",
" An IterDomain was found to be used in more than one expression.");
replay_id2expr_map[id] = replay_expr;
}
// Only want to forward rfactor in map
auto out_ids = ir_utils::filterByType<IterDomain>(replay_expr->outputs());
if (std::any_of(out_ids.begin(), out_ids.end(), [](IterDomain* id) {
return id->isRFactorProduct();
})) {
auto inp_ids = ir_utils::filterByType<IterDomain>(replay_expr->inputs());
replay_rfactor_ids.insert(inp_ids.begin(), inp_ids.end());
}
}
std::unordered_map<IterDomain*, Expr*> target_id2expr_map;
for (auto target_expr : target_exprs) {
for (auto id : ir_utils::filterByType<IterDomain>(target_expr->inputs())) {
TORCH_INTERNAL_ASSERT(
target_id2expr_map.insert({id, target_expr}).second,
"BestEffortReplay : Unexpected multi-use of id",
id);
}
}
if (skip_swizzle_) {
// Progress through all swizzle ops if we are skipping
// swizzles on the mapping.
skipSwizzles(target_id2expr_map, replay_id2expr_map);
}
std::string err_str(
"Error during replay, a transformation was called that conflicts with an rfactor call.");
bool any_target_expr_contains_broadcast_id = false;
// Iterate through target IterDomains' history and compare with what we
// recorded from replay_domain
for (auto target_expr : target_exprs) {
auto target_inps_filtered =
ir_utils::filterByType<IterDomain>(target_expr->inputs());
// If any input argument in target expression is in the forward map then
// forward the mapped IterDomains in replay and continue to the next
// expression as target_expr cannot match a replay_expr
if (std::any_of(
target_inps_filtered.begin(),
target_inps_filtered.end(),
[&](IterDomain* target_inp) {
return this->inTargetForwardMap(target_inp);
})) {
for (auto target_inp : target_inps_filtered) {
if (inTargetForwardMap(target_inp)) {
auto target2replay_it = target2replay_id_map_.find(target_inp);
if (target2replay_it != target2replay_id_map_.end()) {
// Replace target_inp entry in target2replay_id_map_ with forwarded
// id
target2replay_id_map_[getTargetForwardedId(target_inp)] =
target2replay_it->second;
target2replay_id_map_.erase(target_inp);
}
}
}
// Continue to next target_expr
continue;
}
std::vector<IterDomain*> target_id_inps(
target_inps_filtered.begin(), target_inps_filtered.end());
bool target_expr_contains_broadcast_id = std::any_of(
target_inps_filtered.begin(),
target_inps_filtered.end(),
[](IterDomain* id) { return id->isBroadcast(); });
any_target_expr_contains_broadcast_id =
any_target_expr_contains_broadcast_id ||
target_expr_contains_broadcast_id;
std::vector<IterDomain*> replay_inps =
std::vector<IterDomain*>(target_id_inps.size(), nullptr);
bool missing_replay_input = false;
// Map target_expr inputs to replay domain directly
for (const auto t_i : c10::irange(target_id_inps.size())) {
// There might not be a mapping, that could be okay (depends on rfactor
// checking).
auto it = target2replay_id_map_.find(target_id_inps[t_i]);
if (it != target2replay_id_map_.end()) {
replay_inps[t_i] = getReplayForwardedId(it->second);
} else {
missing_replay_input = true;
}
}
// Check if any of the associated replay id's are part of an rfactor domain
bool replay_has_rfactor_inp = std::any_of(
replay_inps.begin(),
replay_inps.end(),
[&replay_rfactor_ids](IterDomain* id) {
return id == nullptr ? false
: id->isRFactorProduct() &&
(replay_rfactor_ids.find(id) != replay_rfactor_ids.end());
});
// If some replay id inputs are part of rfactor, make sure all target
// expression inputs map to a replay input
if (replay_has_rfactor_inp) {
bool no_missing_exprs = std::none_of(
replay_inps.begin(),
replay_inps.end(),
[&replay_id2expr_map](IterDomain* id) {
if (id == nullptr) {
return true;
} else {
return replay_id2expr_map.find(id) == replay_id2expr_map.end();
}
});
// View operation creates a TensorView with rfactor. After view, broadcast
// operation adds iterDomains for any size-1 dimensions. Therefore, the
// target domain (broadcast) may contain broadcast ids that are not
// present in the replay domain (view). In this case, we skip any target
// expressions that contain broadcast ids.
TORCH_INTERNAL_ASSERT(
no_missing_exprs || any_target_expr_contains_broadcast_id, err_str);
}
// If any inputs are missing, continue as this expr doesn't match.
if (missing_replay_input) {
TORCH_INTERNAL_ASSERT(
!replay_has_rfactor_inp || any_target_expr_contains_broadcast_id,
err_str);
continue;
}
// Find which replay_expr maps to the target_expr
Expr* replay_expr = nullptr;
// Check if all inputs have the same expression
bool mismatched_replay_exprs = false;
for (auto replay_inp : replay_inps) {
auto it = replay_id2expr_map.find(replay_inp);
if (it != replay_id2expr_map.end()) {
if (replay_expr == nullptr) {
replay_expr = it->second;
} else {
mismatched_replay_exprs =
mismatched_replay_exprs || replay_expr != it->second;
}
} else {
// If no expr is mapped then set mismatched epxrs to go to continue to
// the next target expr
mismatched_replay_exprs = true;
}
}
// If expressions of mapped inputs don't match, then continue to next target
// expr
if (mismatched_replay_exprs || replay_expr == nullptr) {
TORCH_INTERNAL_ASSERT(!replay_has_rfactor_inp, err_str);
continue;
}
bool mismatched_inputs = replay_inps.size() != replay_expr->inputs().size();
for (size_t i = 0; i < replay_inps.size() && !mismatched_inputs; i++) {
mismatched_inputs =
mismatched_inputs || replay_expr->inputs()[i] != replay_inps[i];
}
// If there isn't an rfactor id in the replay's inputs and there's a
// mismatched input, continue
if (mismatched_inputs) {
TORCH_INTERNAL_ASSERT(!replay_has_rfactor_inp, err_str);
continue;
}
// If there isn't an rfactor id in the replay's inputs and there's a
// mismatch in replay_expr's and target_expr's outputs, continue
if (target_expr->outputs().size() != replay_expr->outputs().size()) {
TORCH_INTERNAL_ASSERT(!replay_has_rfactor_inp, err_str);
continue;
}
// If there isn't an rfactor id in the replay's inputs and there's a
// mismatch in replay_expr's and target_expr's expression type, continue
if (replay_expr->getExprType().value() !=
target_expr->getExprType().value()) {
TORCH_INTERNAL_ASSERT(!replay_has_rfactor_inp, err_str);
continue;
}
// If there isn't an rfactor id in the replay's inputs and there's a
// mismatch in replay_expr's and target_expr's split factor (if a split
// expr), continue
if (replay_expr->getExprType().value() == ExprType::Split) {
auto r_split = replay_expr->as<Split>();
auto t_split = target_expr->as<Split>();
if (!r_split->factor()->sameAs(t_split->factor()) ||
r_split->innerSplit() != t_split->innerSplit() ||
!r_split->startOffset()->sameAs(t_split->startOffset()) ||
!r_split->stopOffset()->sameAs(t_split->stopOffset())) {
TORCH_INTERNAL_ASSERT(!replay_has_rfactor_inp, err_str);
continue;
}
}
// Need to match swizzle type and parameters if
// not skipping swizzles in this mapping pass.
if (!skip_swizzle_ && replay_expr->etype() == ExprType::Swizzle2D) {
auto r_swizzle_2d = replay_expr->as<Swizzle2D>();
auto t_swizzle_2d = target_expr->as<Swizzle2D>();
if (!(r_swizzle_2d->swizzleType() == t_swizzle_2d->swizzleType())) {
TORCH_INTERNAL_ASSERT(!replay_has_rfactor_inp, err_str);
continue;
}
}
// Take replay expr inputs out of map:
for (const auto t_i : c10::irange(target_id_inps.size())) {
auto t_inp = target_id_inps[t_i];
auto r_orig_inp = target2replay_id_map_.at(t_inp);
auto r_maybe_forwarded_inp = replay_inps[t_i];
// Remove original target2replay_it->second if it's in leaf_ids
if (leaf_ids_.find(r_orig_inp) != leaf_ids_.end()) {
leaf_ids_.erase(r_orig_inp);
}
// Check if we used a forwarded id, if so add forwarded id's to tracking.
if (r_orig_inp != r_maybe_forwarded_inp) {
forwarded_ids_.emplace_back(r_orig_inp);
}
}
// Add outputs to map.
for (const auto i : c10::irange(target_expr->outputs().size())) {
auto t_out = target_expr->output(i);
auto r_out = replay_expr->output(i);
if (t_out->getValType() == ValType::IterDomain &&
r_out->getValType() == ValType::IterDomain) {
target2replay_id_map_[t_out->as<IterDomain>()] =
r_out->as<IterDomain>();
leaf_ids_[r_out->as<IterDomain>()] = counter++;
}
}
if (skip_swizzle_) {
// Progress through all swizzle ops if we are skipping
// swizzles on the mapping.
skipSwizzles(target_id2expr_map, replay_id2expr_map);
}
}
}
// Find the first position i where td1[i] is not the same as td2[i].
// "Same" means the DAG to generate td1[i] and td2[i] are the
// equivelent.
int BestEffortReplay::findFirstMismatchedID(
const TensorDomain* td1,
const TensorDomain* td2) {
std::unordered_map<IterDomain*, IterDomain*> id_map;
auto rd1 = td1->getRootDomain();
auto rd2 = td2->getRootDomain();
std::unordered_set<IterDomain*> rd2_set(
td2->getRootDomain().begin(), td2->getRootDomain().end());
// Find matching root IterDomains, we could make this O(nlog(n)) if we could
// sort IterDomains.
for (auto rd1i : rd1) {
for (auto rd2i : rd2) {
if (rd1i->sameAs(rd2i) && rd2_set.find(rd2i) != rd2_set.end()) {
id_map[rd1i] = rd2i;
rd2_set.erase(rd2i);
break;
}
}
}
BestEffortReplay ber(td2->domain(), td1->domain(), id_map);
for (const auto i :
c10::irange(std::max(td1->domain().size(), td2->domain().size()))) {
if (ber.getReplay().find(td1->axis(i)) == ber.getReplay().end()) {
return i;
}
// Order is important.
auto td2_axis = ber.getReplay().at(td1->axis(i));
if (td2->axis(i) != td2_axis) {
return i;
}
}
return std::min(td1->nDims(), td2->nDims());
}
namespace {
// Maps that track information relevant to best effort replay about broadcast
// axes in consumer that are not in producer
//
// For example if we have consumer: T0[i0, b1, b2, i3] and producer:
// T1[i0, i3]
//
// If consumer transformations are:
// -> T[i0, b1o, b1i, b2o, b2i, i3]
// -> T[i0*b1i, b1o, b2o, b2i, i3]
// -> T[i0*b1i*b2o, b1o, b2i, i3]
// -> T[i0*b1i*b2o*i3, b1o, b2i]
//
// forwarding_map would forward i0->i0*b1i and i0*b1i->i0*b1i*b2o
// compliment_map would have the entry i0->b1i and i0*b1i->b2o
//
// The first is to fast forward transformations in consumer involving broadcast
// axes not in producer. The compliment map is to use later to compute what leaf
// nodes we may have after the forwarding process is finished. Leaf nodes are
// only important for replayCasP, so look there to see how this is done. Forward
// map is used for replayCasP and replayPasC.
struct ConsumerForwardingInfo {
public:
// Map IterDomain* axes that can safely be forwarded to their output.
std::unordered_map<IterDomain*, IterDomain*> forwarding_map;
// Given a forward id map id_input -> id_forwarded
// Track the other inputs in the expr that id_input is an input to. These will
// be used to adjust the replay's leaf tracking. Don't need to track one to
// many as currently transformations on IterDomains can only have maximum 2
// inputs, but maybe in the future we'll have more.
std::unordered_map<IterDomain*, std::vector<IterDomain*>> compliment_map;
ConsumerForwardingInfo(
const TensorView* producer,
const TensorView* consumer) {
// Collect which root axes are in consumer that are not in producer because
// of broadcasting
std::unordered_set<IterDomain*> consumer_bcast_roots_not_in_producer;
const auto c2p_root_map =
PairwiseRootDomainMap(producer, consumer)
.mapConsumerToProducer(consumer->domain(), producer->domain());
for (auto consumer_root_id : consumer->getRootDomain()) {
if (consumer_root_id->isBroadcast()) {
if (c2p_root_map.find(consumer_root_id) == c2p_root_map.end()) {
consumer_bcast_roots_not_in_producer.emplace(consumer_root_id);
}
}
}
// We have root axes in consumer that don't exist in producer, now forward
// those to include all id's in consumer comprised of only axes not in
// producer.
auto consumer_bcast_ids_not_in_producer =
consumer_bcast_roots_not_in_producer;
std::vector<Expr*> consumer_history = StmtSort::getExprs(
FusionGuard::getCurFusion(),
std::vector<Val*>(
consumer->domain()->domain().begin(),
consumer->domain()->domain().end()));
auto isIdOnlyInConsumer =
[&consumer_bcast_ids_not_in_producer](IterDomain* input_id) {
return consumer_bcast_ids_not_in_producer.find(input_id) !=
consumer_bcast_ids_not_in_producer.end();
};
for (auto expr : consumer_history) {
auto input_ids = ir_utils::filterByType<IterDomain>(expr->inputs());
// If expr inputs are all in consumer_bcast_ids_not_in_producer, than so
// are all outputs
if (std::all_of(input_ids.begin(), input_ids.end(), isIdOnlyInConsumer)) {
// add all outputs to not being in producer
for (auto output_ids :
ir_utils::filterByType<IterDomain>(expr->outputs())) {
consumer_bcast_ids_not_in_producer.emplace(output_ids);
}
} else if (
expr->isA<Merge>() &&
std::any_of(input_ids.begin(), input_ids.end(), isIdOnlyInConsumer)) {
auto merge_expr = expr->as<Merge>();
// If
// - one of the inputs is made of id's in consumer that don't map to
// producer (bcast axes),
// - && the other input maps to an id in both consumer and producer
// - && this is a merge
// for the sake of BestEffortReplay we can forward the input mapping
// to both consumer and producer to the output of the expression
std::vector<IterDomain*> forwarded_ids;
std::vector<IterDomain*> compliment_ids;
for (auto input_id : input_ids) {
if (!isIdOnlyInConsumer(input_id)) {
forwarded_ids.emplace_back(input_id);
forwarding_map.emplace(std::make_pair(input_id, merge_expr->out()));
} else {
compliment_ids.push_back(input_id);
}
}
// Set up compliment map
for (auto forwarded_id : forwarded_ids) {
compliment_map.emplace(std::make_pair(forwarded_id, compliment_ids));
}
}
}
}
};
// Maps that track information relevant to best effort replay about
// trivial-reduction axes in producer
//
// For example if we have producer: T0[i0, r1, r2, i3] and consumer:
// T1[i0, i3]
//
// If producer transformations are:
// -> T[i0, r1, r2, i3]
// -> T[i0*r1, r2, i3]
// -> T[i0*r1*r2, i3]
//
// forwarding_map would forward i0->i0*r1 and i0*r1->i0*r1*r2
// compliment_map would have the i0->r1 and i0*r1->r2
//
// These two maps are used similarly as ConsumerForwardingInfo. See
// its comments as well.
struct ProducerForwardingInfo {
public:
// Map IterDomain* axes that can safely be forwarded to their output.
std::unordered_map<IterDomain*, IterDomain*> forwarding_map;
// Given a forward id map id_input -> id_forwarded
// Track the other inputs in the expr that id_input is an input to. These will
// be used to adjust the replay's leaf tracking. Don't need to track one to
// many as currently transformations on IterDomains can only have maximum 2
// inputs, but maybe in the future we'll have more.
std::unordered_map<IterDomain*, std::vector<IterDomain*>> compliment_map;
ProducerForwardingInfo(const TensorView* producer) {
std::vector<Expr*> producer_history = StmtSort::getExprs(
FusionGuard::getCurFusion(),
std::vector<Val*>(
producer->domain()->domain().begin(),
producer->domain()->domain().end()));
for (auto merge : ir_utils::filterByType<Merge>(producer_history)) {
auto inner = merge->inner();
auto outer = merge->outer();
if ((inner->isTrivialReduction() && !outer->isReduction()) ||
(outer->isTrivialReduction() && !inner->isReduction())) {
auto compliment_id = inner->isTrivialReduction() ? inner : outer;
auto forwarded_id = inner->isTrivialReduction() ? outer : inner;
// Only allow forwarding when the trivial reduction domain is
// an root domain
if (std::find(
producer->getMaybeRFactorDomain().begin(),
producer->getMaybeRFactorDomain().end(),
compliment_id) == producer->getMaybeRFactorDomain().end()) {
continue;
}
forwarding_map.emplace(std::make_pair(forwarded_id, merge->out()));
compliment_map.emplace(std::make_pair(
forwarded_id, std::vector<IterDomain*>{compliment_id}));
}
}
}
};
// Trace chain of swizzles until reaching
// an IterDomain that's either a leaf or
// not a producer of any swizzle.
IterDomain* getSwizzleFinalOutput(
IterDomain* id,
const std::unordered_map<IterDomain*, Expr*>& id2expr) {
bool is_swizzle_input = true;
// Note: currently not supporting swizzling consumer of another
// swizzle id, so this should terminate in 1 iter, but eventually
// will try to support stacked swizzles so keeping this pass
// generic.
while (is_swizzle_input) {
auto expr_it = id2expr.find(id);
// This means id is a leaf that doesn't
// have any consumers. Stop iteration in this case.
if (expr_it == id2expr.end()) {
is_swizzle_input = false;
break;
}
if (expr_it->second->etype() == ExprType::Swizzle2D) {
// In the case of 2D swizzle ops, just forward
// inX to outX and inY to outY.
auto expr = expr_it->second->as<Swizzle2D>();
if (id == expr->inX()) {
id = expr->outX();
} else {
TORCH_INTERNAL_ASSERT(
id == expr->inY(),
"unknown input to swizzle op",
id->toString(),
expr->toString());
id = expr->outY();
}
} else {
// Probably unreachable but if the expression
// is unknown type assume it is not a swizzle op.
is_swizzle_input = false;
}
}
return id;
}
bool isSwizzleInput(
IterDomain* input_id,
const std::unordered_map<IterDomain*, Expr*>& id2expr) {
auto user_expr_it = id2expr.find(input_id);
if (user_expr_it == id2expr.end()) {
return false;
}
return user_expr_it->second->etype() == ExprType::Swizzle2D;
}
} // namespace
void BestEffortReplay::addComplimentLeafIDs(
const std::unordered_map<IterDomain*, IterDomain*>& forwarding_map,
const std::unordered_map<IterDomain*, std::vector<IterDomain*>>&
compliment_map) {
// ID's could go through more than one forward iteration in the map before it
// terminates. Grab every id between the forwarded id, and what it was
// forwarded to
std::function<void(IterDomain*, std::vector<IterDomain*>&)>
collectForwardedIds =
[&forwarding_map, &collectForwardedIds](
IterDomain* forward_id,
std::vector<IterDomain*>& forwarded_ids) -> void {
if (forwarding_map.find(forward_id) != forwarding_map.end()) {
forwarded_ids.emplace_back(forward_id);
collectForwardedIds(forwarding_map.at(forward_id), forwarded_ids);
}
};
std::vector<IterDomain*> expanded_forwarded_ids;
for (auto forwarded_id : forwarded_ids_) {
collectForwardedIds(forwarded_id, expanded_forwarded_ids);
}
// Grab all compliments of forwarded ids.
std::vector<IterDomain*> compliments;
for (auto forwarded_id : expanded_forwarded_ids) {
auto compliment_map_it = compliment_map.find(forwarded_id);
TORCH_INTERNAL_ASSERT(
compliment_map_it != compliment_map.end(),
"Issue tracking forwarded broadcast merges in best effort replay.");
compliments.insert(
compliments.end(),
compliment_map_it->second.begin(),
compliment_map_it->second.end());
}
// Grab all exprs used to make the forwarded compliments
auto compliment_exprs = StmtSort::getExprs(
FusionGuard::getCurFusion(), {compliments.begin(), compliments.end()});
// Figure out if there are any leaves in compliment_exprs that aren't
// the forwarded id
std::unordered_map<IterDomain*, size_t> leaf_ids;
for (auto expr : compliment_exprs) {
for (auto inp : ir_utils::filterByType<IterDomain>(expr->inputs())) {
leaf_ids.erase(inp);
}
for (auto out : ir_utils::filterByType<IterDomain>(expr->outputs())) {
// If we used the comliment for forwarded don't add to leaf nodes.
if (std::find(compliments.begin(), compliments.end(), out) ==
compliments.end()) {
leaf_ids.emplace(std::make_pair(out, counter++));
}
}
}
leaf_ids_.insert(leaf_ids.begin(), leaf_ids.end());
}
BestEffortReplay BestEffortReplay::replayCasP(
const TensorView* consumer,
const TensorView* producer,
int producer_compute_at_axis,
const RootDomainMap& root_map) {
if (producer_compute_at_axis < 0)
producer_compute_at_axis += (int)producer->nDims() + 1;
TORCH_INTERNAL_ASSERT(
producer_compute_at_axis >= 0 &&
(unsigned int)producer_compute_at_axis <= producer->nDims(),
"Invalid axis provided to BestEffortReplay::replayCasP.");
// producer ids we need to match in consumer
std::vector<IterDomain*> producer_CA_ids(
producer->domain()->domain().begin(),
producer->domain()->domain().begin() + producer_compute_at_axis);
producer_CA_ids = TensorDomain::noReductions(producer_CA_ids);
// If producer has an rfactor root, that's what will match the consumer
std::vector<IterDomain*> producer_root = producer->getMaybeRFactorDomain();
// Figure out all inputs required to generate the compute_at dimensions. We
// need all deps because inputs on producer may be in getRootDomain, but we
// may need in rFactorDomain
auto all_CA_id_deps = DependencyCheck::getAllValsBetween(
{producer_root.begin(), producer_root.end()},
{producer_CA_ids.begin(), producer_CA_ids.end()});
// Figure out minimal set of root IDs needed to produce producer_CA_ids:
std::unordered_set<IterDomain*> producer_CA_root_ids;
for (IterDomain* id : producer_root) {
if (std::find(all_CA_id_deps.begin(), all_CA_id_deps.end(), id) !=
all_CA_id_deps.end()) {
producer_CA_root_ids.emplace(id);
}
}
const auto p2c_root_map = root_map.mapProducerToConsumer(
producer->domain(), consumer->domain(), producer_CA_root_ids);
// See FusionAdvancedComputeAt7 for an example of the forwarding logic
ConsumerForwardingInfo consumer_forwarding_info(producer, consumer);
ProducerForwardingInfo producer_forwarding_info(producer);
auto consumer_replay = BestEffortReplay(
consumer->domain()->domain(),
producer_CA_ids,
p2c_root_map,
consumer_forwarding_info.forwarding_map,
producer_forwarding_info.forwarding_map);
consumer_replay.addComplimentLeafIDs(
consumer_forwarding_info.forwarding_map,
consumer_forwarding_info.compliment_map);
return consumer_replay;
}
// Runs a best effort replay that ignores broadcast axes that appear in
// consumer that are not mapped to producer in root_map.
BestEffortReplay BestEffortReplay::replayPasC(
const TensorView* producer,
const TensorView* consumer,
int consumer_compute_at_axis,
const RootDomainMap& root_map) {
if (consumer_compute_at_axis < 0)
consumer_compute_at_axis += (int)consumer->nDims() + 1;
TORCH_INTERNAL_ASSERT(
consumer_compute_at_axis >= 0 &&
(unsigned int)consumer_compute_at_axis <= consumer->nDims(),
"Invalid axis provided to BestEffortReplay::replayPasC.");
// consumer ids we need to match in producer
std::vector<IterDomain*> consumer_CA_ids(
consumer->domain()->domain().begin(),
consumer->domain()->domain().begin() + consumer_compute_at_axis);
// Figure out all inputs required to generate the compute_at dimensions
auto consumer_CA_root_vals = IterVisitor::getInputsTo(
std::vector<Val*>(consumer_CA_ids.begin(), consumer_CA_ids.end()));
std::unordered_set<IterDomain*> consumer_CA_root_ids;
for (auto val : consumer_CA_root_vals) {
if (val->getValType().value() == ValType::IterDomain) {
consumer_CA_root_ids.emplace(val->as<IterDomain>());
}
}
const auto c2p_root_map = root_map.mapConsumerToProducer(
consumer->domain(), producer->domain(), consumer_CA_root_ids);
ConsumerForwardingInfo consumer_forwarding_info(producer, consumer);
ProducerForwardingInfo producer_forwarding_info(producer);
// Instead of replaying from the root, lets try to play forward the history
// of producer if they match ops on consumer. Enforce if we modify an
// rfactor axis that those ops must match.
auto producer_replay = BestEffortReplay(
producer->domain()->domain(),
consumer_CA_ids,
c2p_root_map,
producer_forwarding_info.forwarding_map,
consumer_forwarding_info.forwarding_map);
producer_replay.addComplimentLeafIDs(
producer_forwarding_info.forwarding_map,
producer_forwarding_info.compliment_map);
return producer_replay;
}
void BestEffortReplay::skipSwizzles(
const std::unordered_map<IterDomain*, Expr*>& target_id2expr,
const std::unordered_map<IterDomain*, Expr*>& replay_id2expr) {
// Update target2replay map
bool updated = true;
while (updated) {
updated = false;
for (auto it : target2replay_id_map_) {
if (isSwizzleInput(it.first, target_id2expr) ||
isSwizzleInput(it.second, replay_id2expr)) {
updated = true;
auto new_target = getSwizzleFinalOutput(it.first, target_id2expr);
auto new_replay = getSwizzleFinalOutput(it.second, replay_id2expr);
// new_target and new_replay will now be the final output
// skipping all swizzles in between. We'd need to
// update the mapping and leaf ids to the final outputs.
target2replay_id_map_.erase(it.first);
TORCH_INTERNAL_ASSERT(
target2replay_id_map_.insert(std::make_pair(new_target, new_replay))
.second,
"Unexpected replay leaf");
// Progress the leaf ids if the replay is updated
if (it.second != new_replay &&
leaf_ids_.find(it.second) != leaf_ids_.end()) {
leaf_ids_.erase(it.second);
leaf_ids_[new_replay] = counter++;
}
break;
}
}
}
}
DisjointSets<IterDomain*> BestEffortReplay::getDisjointSets() {
DisjointSets<IterDomain*> result;
const std::unordered_map<IterDomain*, IterDomain*>* maps[3] = {
&target2replay_id_map_, &replay_forward_id_map_, &target_forward_id_map_};
for (auto map : maps) {
for (auto entry : *map) {
result.mapEntries(entry.first, entry.second);
}
}
return result;
}
} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch
|