1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
|
#include <torch/csrc/jit/codegen/cuda/transform_rfactor.h>
#include <torch/csrc/jit/codegen/cuda/arith.h>
#include <torch/csrc/jit/codegen/cuda/fusion.h>
#include <torch/csrc/jit/codegen/cuda/instrumentation.h>
#include <torch/csrc/jit/codegen/cuda/ir_builder.h>
#include <torch/csrc/jit/codegen/cuda/ir_iostream.h>
#include <torch/csrc/jit/codegen/cuda/ir_utils.h>
#include <torch/csrc/jit/codegen/cuda/iter_visitor.h>
namespace torch {
namespace jit {
namespace fuser {
namespace cuda {
namespace {
// This class replays the root domains of the producer of an rfactor domain.
// Axes must be replayed to mark rfactor iter domains as being reductions in the
// producer, but converting the other reductions in the producer as iter
// domains. Those (previously reductions in the producer) iter domains are then
// converted to reduction domains in the consumer. This breaks up the reduction
// into two stages, but maintains the correct values are reduced across those
// stages.
//
// The rfactor domain of the producer must match the consumers root domain to
// maintain producer-consumer mappings. The following uses the original domain
// being rfactored and marked iter domains as "static_rfactor_ids". These static
// IDs cannot be changed in the producer as it would invalidate the rfactor, no
// longer matching the consumer.
//
// To find the rfactor domain in the producer which will be used as the root
// domain in the consumer, we start at the roots of producer, and replay forward
// the root iter domains if that iter domain is marked as a "static_rfactor_id".
// To do this we maintain the ordering of the iter domains. For example:
//
// I1
// /\ //
// I2 \ //
// /\ I3
// / I4 /
// / \/
// I5 I6
//
// If rfactor_axes = {I6}, then "static_rfactor_id" IDs will be {I6, I4, I3, I2,
// I1}. Then, as we perform the replay the rfactor domain will be updated as:
// [I1] -> [I2, I3] -> [I5, I4, I3] -> [I5, I6]
//
// ReplayTransformations typically updates the leaf ids, but we'll simply use
// the mapping from the original tensor domain so we won't bother updating them
// in this replay.
class ReplayRFactor : public ReplayTransformations {
private:
// Perform the update of the rfactor domain by replacing "replace0" with
// "with0" and if not nullptr "with1", also removes "replace1" if not nullptr.
void updateRFactorDomain(
IterDomain* replace0,
IterDomain* replace1,
IterDomain* with0,
IterDomain* with1) {
TORCH_INTERNAL_ASSERT(
with0 != nullptr,
"The first provided IterDomain should be a real pointer,",
" the second iter domain provided can be a nullptr.");
auto pos =
std::find(rfactor_domain_.begin(), rfactor_domain_.end(), replace0);
TORCH_INTERNAL_ASSERT(
pos != rfactor_domain_.end(),
"Could not find iter domain: ",
replace0->toString(),
" in the rfactor domain to replace.");
rfactor_domain_.insert(pos, with0);
if (with1 != nullptr) {
pos = std::find(rfactor_domain_.begin(), rfactor_domain_.end(), replace0);
rfactor_domain_.insert(pos, with1);
}
pos = std::find(rfactor_domain_.begin(), rfactor_domain_.end(), replace0);
rfactor_domain_.erase(pos);
if (replace1 != nullptr) {
pos = std::find(rfactor_domain_.begin(), rfactor_domain_.end(), replace1);
TORCH_INTERNAL_ASSERT(
pos != rfactor_domain_.end(),
"Wanted to replace ",
replace1->toString(),
" but it's not in the rfactor domain.");
rfactor_domain_.erase(pos);
}
}
// Took a good bit of this from ReplayTransformations::handle(Split...)
void handle(Split* s) override {
// Grab input to the split operation
auto id_in = s->in();
// Grab our mapping of that ID to the one we're replaying
auto it = id_map_.find(id_in);
// Make sure it exists in the map
TORCH_INTERNAL_ASSERT(
it != id_map_.end(),
"Transform traversal failed, dependencies not met.");
// Grab the ID we're going to replay on
auto mapped = (*it).second;
// This ID should be a leaf ID (meaning it has no uses we generated)
TORCH_INTERNAL_ASSERT(
leaf_ids_.find(mapped) != leaf_ids_.end(),
"Transform traversal failed, modified a node but it was not a leaf node.");
// outer loop size
Val* remainder = ceilDiv(mapped->extent(), s->factor());
// Check if we need to mark the outputs as an rfactor domain meaning this
// transformation must be present in replays otherwise it breaks the compute
// definition of the fusion. Iter domains are actually not static, its the
// transformation that's static or not, so if one output is marked as a
// static id, then both must be.
bool static_rfactor_outputs = static_rfactor_ids_.count(s->outer()) ||
static_rfactor_ids_.count(s->inner());
// Manually replay the split, making reduction = false and rfactor = true
// outer IterDomain
IterDomain* ido =
IterDomainBuilder(
s->container()->zeroVal(),
s->innerSplit() ? remainder->as<Int>() : s->factor())
.iter_type(
rfactor_axes_.count(s->outer()) ? IterType::Reduction
: IterType::Iteration)
.is_rfactor_domain(static_rfactor_outputs)
.build();
// inner IterDomain
IterDomain* idi =
IterDomainBuilder(
s->container()->zeroVal(),
s->innerSplit() ? s->factor() : remainder->as<Int>())
.iter_type(
rfactor_axes_.count(s->inner()) ? IterType::Reduction
: IterType::Iteration)
.is_rfactor_domain(static_rfactor_outputs)
.build();
// Generate the split node
IrBuilder::create<Split>(
s->container(), ido, idi, mapped, s->factor(), s->innerSplit());
// Remove mapped id from leaf IDs
leaf_ids_.erase(mapped);
// Add outputs to leaf IDs
leaf_ids_[ido] = counter++;
leaf_ids_[idi] = counter++;
// Update our ID map to include these outputs
id_map_[s->outer()] = ido;
id_map_[s->inner()] = idi;
if (static_rfactor_ids_.count(s->in())) {
updateRFactorDomain(s->in(), nullptr, s->outer(), s->inner());
}
}
void handle(Merge* m) override {
auto id_outer = m->outer();
auto id_inner = m->inner();
auto it_outer = id_map_.find(id_outer);
auto it_inner = id_map_.find(id_inner);
TORCH_INTERNAL_ASSERT(
it_outer != id_map_.end() && it_inner != id_map_.end(),
"Transform traversal failed, dependencies not met.");
auto id_outer_mapped = (*it_outer).second;
auto id_inner_mapped = (*it_inner).second;
TORCH_INTERNAL_ASSERT(
leaf_ids_.find(id_outer_mapped) != leaf_ids_.end() &&
leaf_ids_.find(id_inner_mapped) != leaf_ids_.end(),
"Transform traversal failed, modified ",
id_outer_mapped,
" and ",
id_inner_mapped,
" however one or both are not leaf nodes.");
Val* merged_id_size =
mul(id_outer_mapped->extent(), id_inner_mapped->extent());
IterDomain* merged_id =
IterDomainBuilder(m->container()->zeroVal(), merged_id_size->as<Int>())
.iter_type(
rfactor_axes_.count(m->out()) ? IterType::Reduction
: IterType::Iteration)
.is_rfactor_domain(static_rfactor_ids_.count(m->out()))
.build();
IrBuilder::create<Merge>(
m->container(), merged_id, id_outer_mapped, id_inner_mapped);
// Remove inputs from the leaf IDs
leaf_ids_.erase(id_outer_mapped);
leaf_ids_.erase(id_inner_mapped);
// Add the output to the leaf IDs
leaf_ids_[merged_id] = counter++;
id_map_[m->out()] = merged_id;
// Similar to split replay above, check if output needs to be marked as
// rfactor indicating this transofrmation is static.
if (static_rfactor_ids_.count(m->inner()) ||
static_rfactor_ids_.count(m->outer())) {
TORCH_INTERNAL_ASSERT(
static_rfactor_ids_.count(m->inner()) ==
static_rfactor_ids_.count(m->outer()),
"If one input to a merge is a static rfactor id, the other must be as well.");
updateRFactorDomain(m->outer(), m->inner(), m->out(), nullptr);
}
}
// The IterDomains in the original_domain that are being factored into the
// first stage of the two stage reduction (the producer).
std::unordered_set<IterDomain*> rfactor_axes_;
// Iter domains whose history cannot be changed as it would break rfactor
// dependencies.
std::unordered_set<IterDomain*> static_rfactor_ids_;
public:
// The updated domain matching the producer's rfactor domain. This rfactor
// domain is relative to the iter domains in the origianl_domain and must be
// updated to grab the mapped id's later.
std::vector<IterDomain*> rfactor_domain_;
ReplayRFactor(
// Original domain the rfactor is in reference to.
TensorDomain* original_domain,
// The root mapping from the original root domain, to the roots of the
// domain to be replayed.
std::unordered_map<IterDomain*, IterDomain*> id_map,
// The rfactor axes in original_domain->domain() to be factored into the
// two stage reduction.
std::unordered_set<IterDomain*> rfactor_axes,
// All the iter domains in original_domain that the rfactor axes are
// dependant on.
std::unordered_set<IterDomain*> static_rfactor_ids)
: ReplayTransformations(
original_domain->domain(),
std::move(id_map),
false),
rfactor_axes_(std::move(rfactor_axes)),
static_rfactor_ids_(static_rfactor_ids),
rfactor_domain_(original_domain->getMaybeRFactorDomain()) {}
};
} // namespace
std::pair<TensorDomain*, TensorDomain*> TransformRFactor::runReplay(
TensorDomain* original_td,
std::vector<int> axes) {
FUSER_PERF_SCOPE("TransformRFactor::runReplay");
TORCH_CHECK(!axes.empty(), "No axes provided to rfactor replay.");
int ndims = (int)original_td->nDims();
// Adjust and check provided axes
std::transform(axes.begin(), axes.end(), axes.begin(), [ndims](int i) {
TORCH_CHECK(
i >= -ndims && i < ndims,
"Rfactor replay recieved an axis outside the number of dims in the tensor, acceptable inclusive range is ",
-ndims,
" to ",
ndims - 1);
return i < 0 ? i + ndims : i;
});
// remove duplicates, and put into a set for searching
std::unordered_set<int> axes_set(axes.begin(), axes.end());
TORCH_INTERNAL_ASSERT(
std::all_of(
axes_set.begin(),
axes_set.end(),
[original_td](int i) { return original_td->axis(i)->isReduction(); }),
"Cannot rfactor axes that are not reduction axes.");
// RFactor requires at least one reduction axis to be marked as factored out,
// and at least one reduction axis that won't. Otherwise it's just a pointwise
// cacheing operation.
bool found_non_rfactor_reduction = false;
// Make a set of final axes that are marked to be rfactored
std::unordered_set<IterDomain*> rfactor_axes(axes_set.size());
{
size_t i = 0;
for (auto id : original_td->domain()) {
if (axes_set.find(i++) != axes_set.end()) {
rfactor_axes.emplace(id);
} else if (id->isReduction()) {
found_non_rfactor_reduction = true;
}
}
}
TORCH_CHECK(
found_non_rfactor_reduction,
"Must have at least one reduction axis not marked as rfactor.");
// Get root IterDomains of the rfactor domains, these will be the ones we will
// replay marked as rfactor axes, those marked in the axes set will be
// reduction=false
auto rfactor_root_vals = IterVisitor::getInputsTo(
std::vector<Val*>(rfactor_axes.begin(), rfactor_axes.end()));
auto rfactor_root_ids = ir_utils::filterByType<IterDomain>(rfactor_root_vals);
// Put in a set to make searching easy
std::unordered_set<IterDomain*> rfactor_root_axes(
rfactor_root_ids.begin(), rfactor_root_ids.end());
TORCH_INTERNAL_ASSERT(
std::none_of(
rfactor_root_ids.begin(),
rfactor_root_ids.end(),
[](IterDomain* id) { return id->maybePartial(); }),
"rFactor of partial domains not allowed, but at least one found.");
auto original_td_root = original_td->getMaybeRFactorDomain();
// Generate a new TensorDomain and set up map from one root to this one.
std::vector<IterDomain*> new_producer_root(original_td_root.size(), nullptr);
std::unordered_map<IterDomain*, IterDomain*> original_to_producer_root_map;
{
for (auto i : c10::irange(original_td_root.size())) {
auto id = original_td_root[i];
// If this is an rfactor root, it will be a reduction in this stage
if (rfactor_root_axes.find(id) != rfactor_root_axes.end()) {
new_producer_root[i] = IterDomainBuilder(id->start(), id->extent())
.stop_offset(id->stopOffset())
.iter_type(IterType::Reduction)
.is_rfactor_domain(true)
.build();
// If this is not an rfactor root, but a reduction root, it should be
// turned into an iteration domain
} else if (id->isReduction()) {
new_producer_root[i] = IterDomainBuilder(id->start(), id->extent())
.stop_offset(id->stopOffset())
.build();
} else {
new_producer_root[i] = id->cloneWithoutRFactor();
}
original_to_producer_root_map[id] = new_producer_root[i++];
}
}
// Axes in the original_td that are in the history of the rfactored domains.
// These will mark which iter domains must be preserved as static
// transformations to preserve compute semantics.
auto all_deps_of_rfactor = DependencyCheck::getAllValsBetween(
{original_td->getMaybeRFactorDomain().begin(),
original_td->getMaybeRFactorDomain().end()},
{rfactor_axes.begin(), rfactor_axes.end()});
auto all_id_deps_of_rfactor =
ir_utils::filterByType<IterDomain>(all_deps_of_rfactor);
std::unordered_set<IterDomain*> static_rfactor_ids(
{all_id_deps_of_rfactor.begin(), all_id_deps_of_rfactor.end()});
// Replay producer dimensions.
ReplayRFactor replay_rfactor(
original_td,
original_to_producer_root_map,
rfactor_axes,
static_rfactor_ids);
std::unordered_map<IterDomain*, IterDomain*> original_to_producer_id_map =
replay_rfactor.getReplay();
std::vector<IterDomain*> new_producer_domain(original_td->nDims(), nullptr);
{
for (auto i : c10::irange(original_td->nDims())) {
auto orig_id = original_td->axis(i);
auto replayed_id_it = original_to_producer_id_map.find(orig_id);
TORCH_INTERNAL_ASSERT(
replayed_id_it != original_to_producer_id_map.end(),
"Error during rfactor replay, missing an axis.");
auto replayed_id = replayed_id_it->second;
replayed_id->parallelize(orig_id->getParallelType());
if (orig_id->hasPaddingToMultipleOfWarp()) {
replayed_id->padToMultipleOfWarp(orig_id->getMaybeSizeAfterPadding());
}
new_producer_domain[i++] = replayed_id;
}
}
// Specify the rfactor domain of the producer which will match the consumer
// root domain.
std::vector<IterDomain*> new_producer_rfactor_domain;
new_producer_rfactor_domain.reserve(replay_rfactor.rfactor_domain_.size());
std::transform(
replay_rfactor.rfactor_domain_.begin(),
replay_rfactor.rfactor_domain_.end(),
std::back_inserter(new_producer_rfactor_domain),
[&](IterDomain* id) {
auto replayed_id_it = original_to_producer_id_map.find(id);
TORCH_INTERNAL_ASSERT(
replayed_id_it != original_to_producer_id_map.end(),
"Error during rfactor replay, missing an axis.");
return replayed_id_it->second;
});
TensorDomain* producer_domain = IrBuilder::create<TensorDomain>(
original_td->container(),
new_producer_root,
new_producer_rfactor_domain,
new_producer_domain,
std::vector<bool>(new_producer_rfactor_domain.size(), true));
// Producer has been finished, now work on consumer.
// For convenience flip the original to producer map
std::unordered_map<IterDomain*, IterDomain*> producer_to_original_map;
for (auto entry : original_to_producer_id_map) {
producer_to_original_map[entry.second] = entry.first;
}
std::vector<IterDomain*> new_consumer_root_domain;
new_consumer_root_domain.reserve(new_producer_rfactor_domain.size());
std::unordered_map<IterDomain*, IterDomain*> original_to_consumer_root_map;
for (auto p_root_id : new_producer_rfactor_domain) {
if (p_root_id->isReduction()) {
continue;
}
auto p2o_it = producer_to_original_map.find(p_root_id);
TORCH_INTERNAL_ASSERT(
p2o_it != producer_to_original_map.end(),
"Missing mapping from original tensor domain to producer tensor domain.");
auto original_id = p2o_it->second;
auto new_consumer_root =
IterDomainBuilder(original_id->start(), original_id->extent())
.stop_offset(original_id->stopOffset())
.iter_type(original_id->getIterType())
.build();
new_consumer_root_domain.push_back(new_consumer_root);
original_to_consumer_root_map[original_id] = new_consumer_root;
}
ReplayTransformations consumer_replay(
original_td->domain(), original_to_consumer_root_map, false);
auto original_to_consumer_map = consumer_replay.getReplay();
std::vector<IterDomain*> new_consumer_domain;
{
// Construct the new consumer domain
for (auto i : c10::irange(original_td->nDims())) {
auto orig_id = original_td->axis(i);
auto replayed_id_it = original_to_consumer_map.find(orig_id);
if (replayed_id_it != original_to_consumer_map.end()) {
auto replayed_id = replayed_id_it->second;
new_consumer_domain.push_back(replayed_id);
replayed_id->parallelize(orig_id->getParallelType());
if (orig_id->hasPaddingToMultipleOfWarp()) {
replayed_id->padToMultipleOfWarp(orig_id->getMaybeSizeAfterPadding());
}
}
}
}
auto consumer_domain = IrBuilder::create<TensorDomain>(
original_td->container(),
new_consumer_root_domain,
new_consumer_domain,
std::vector<bool>(new_consumer_root_domain.size(), true));
return std::make_pair(producer_domain, consumer_domain);
}
} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch
|