1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
|
#include <torch/csrc/jit/codegen/cuda/transform_view.h>
#include <torch/csrc/jit/codegen/cuda/arith.h>
#include <torch/csrc/jit/codegen/cuda/fusion.h>
#include <torch/csrc/jit/codegen/cuda/instrumentation.h>
#include <torch/csrc/jit/codegen/cuda/ir_builder.h>
#include <torch/csrc/jit/codegen/cuda/ir_internal_nodes.h>
#include <torch/csrc/jit/codegen/cuda/ir_iostream.h>
#include <torch/csrc/jit/codegen/cuda/iter_visitor.h>
#include <torch/csrc/jit/codegen/cuda/transform_iter.h>
namespace torch {
namespace jit {
namespace fuser {
namespace cuda {
//! There's three domains associated with performing a view operation:
//! 1) Original Domain:
//! This view is the original input to the view operation. It has no
//! transforms on it, it is however passed in without its reduction domains
//! (as is expected since we're trying to generate the output of the
//! operations).
//!
//! Trivially reduced domain:
//! Predicting which operations are trivial reduced are not trivial. If a
//! broadcast is between two iter domains in the original domain that must be
//! merged for the view transform:
//! - If the broadcast domain lines up with a broadcast domain in the final
//! tensor domain keep it.
//! - If the domain is size-1 but not marked as a broadcast domain (runtime
//! size==1)
//! Note: This isn't something we generally support consistently
//! - If the broadcast domain is marked as a compile time broadcast domain,
//! and doesn't line up with a broadcast domain in the final result.
//! Trivially reduce it.
//! The index for these transformations is marked as the index of the original
//! domain, as that's the input for the trivial reduction. This produces the
//! trivially reduced domain.
//!
//! Post-view Domain:
//! This domain is the original domain after the trivial reductions and all
//! transformations. This domain holds the rfactor domains determined by
//! merge/split operations of the find transformations pass. It is the final
//! domain without all the broadcast operations (can have some that were
//! preserved through the transformations).
//! For example: {1, 2, 1, 4} -> {1, 2, 1, 2, 2} doesn't have any
//! conflicts of the view transformation and the broadcast dimensions,
//! so they won't be trivial reduced, they will simply be propagated
//! through the view.
//! {1, 2, 1, 4} -> {1, 8, 1} does have the second 1 dimension in
//! between the 2 and 8 that have to be merged. The first broadcast axis
//! will be propagated through the domains unafected, yet the second
//! braodcast axis will be trivially reduced, then rebroadcasted.
//! The transformation index marked for the splits/merges to produce this
//! domain are done based on an "in progress" tensor view (called transform
//! view index in the find transformation pass). This allows us to simply apply
//! these transformations serially to produce this domain.
//!
//! Post-broadcast Domain:
//! This domain finally matches the output of the view operation fully and
//! can be used in further computations.
//!
//! View process at compute time:
//! 1) View takes in the input TensorView x, original runtime
//! std::vector<int64_t>, and viewed runtime std::vector<int64_t>.
//! 2) AnalyzeView is called Which will figure out what series of
//! transformations is required from the input tensor to the output tensor.
//! These transformations are recorded.
//! 3) Sum operation is called on the trivial reduction axes from the
//! analysis.
//! 4) applyViewTransforms will generate the output domain of the view
//! operation.
//! Calls TensorDomain::view(view_analysis) which returns the rfactored
//! domain.
//! Gets forwarded to transformView(TensorDomain, view_analysis)
//! Gets forwarded to createViewDomain(TensorDomain, view_analysis)
//! createViewDomain creates the new root domain, and calls
//! createRfactorDomain on view_analysis.transforms().
//! 5) brooadcast will be called with view_analysis.broadcast_axes
//!
//! TODO: Caching assumes that all size-1 inputs are correctly marked as a
//! broadcast dimension. We should probably remove the runtime size-1 merge
//! support in find transformation.
//!
//! Simple abstract class to record transformation and the indices required to
//! apply it.
class Transform : public PolymorphicBase {
public:
virtual std::string toString() const = 0;
int64_t index() const {
return index_;
}
protected:
// Relevant location information for the transformation. Stored information is
// related to when we have to apply that transformation (see long comment at
// top of this file).
Transform(int64_t index) : index_(index) {}
const int64_t index_ = 0;
};
class ViewTransform : public Transform {
public:
// Function to apply the transformation. Transformation is applied on
// current_transformed_domain. root_domain is required here to replace
// IterDomains so we can flip the rfactor flag on the root domain if it's
// involved in merge/split trasnforms to produce the rfactor domain.
virtual void createRfactorDomain(
std::vector<IterDomain*>& root_domain,
std::vector<IterDomain*>& current_transformed_domain) = 0;
// Convenience function to replace id in root_domain with an id that has
// expand expanded, and rfactor flag turned on.
static IterDomain* replaceRootIdWithRFactor(
std::vector<IterDomain*>& root_domain,
IterDomain* id) {
auto root_domain_it = std::find(root_domain.begin(), root_domain.end(), id);
TORCH_INTERNAL_ASSERT(
root_domain_it != root_domain.end(),
"Wanted to replace ",
id->toString(),
" in root with an rfactor dimension, but IterDomain was not found in root.");
auto root_domain_pos = std::distance(root_domain.begin(), root_domain_it);
bool is_expanded_dim = id->hasExpandedExtent();
auto extent = is_expanded_dim ? id->expandedExtent() : id->extent();
auto cloned_id =
IterDomainBuilder(id)
.iter_type(
is_expanded_dim ? IterType::Iteration : id->getIterType())
.extent(extent)
.expanded_extent(nullptr)
.is_rfactor_domain(true)
.build();
root_domain.erase(root_domain.begin() + root_domain_pos);
root_domain.insert(root_domain.begin() + root_domain_pos, cloned_id);
return cloned_id;
}
// Debugging utility to convert the transformation into a string.
virtual std::string toString() const = 0;
protected:
ViewTransform(const int64_t& index) : Transform(index) {}
};
namespace {
//! The merge tranformation either combines two root iterDomains together OR
//! the last rfactor iterDomain with a root iterDomain. Unlike the general
//! TensorView merge there's no merging across axes not placed in consecutive
//! positions for View.
class MergeTransform final : public ViewTransform {
public:
MergeTransform(int64_t index) : ViewTransform(index) {}
virtual std::string toString() const override {
std::stringstream ss;
ss << "Merge at index: " << index_;
return ss.str();
}
void createRfactorDomain(
std::vector<IterDomain*>& root_domain,
std::vector<IterDomain*>& current_transformed_domain) override {
TORCH_INTERNAL_ASSERT(
(index_ + 1) < current_transformed_domain.size(),
"Tried to apply: ",
toString(),
"\t To domain: \t",
current_transformed_domain);
// Assumed to never merge over non-contiguous dimensions.
IterDomain* outer_id = current_transformed_domain[index_];
if (!outer_id->isRFactorProduct()) {
outer_id = replaceRootIdWithRFactor(root_domain, outer_id);
}
IterDomain* inner_id = current_transformed_domain[index_ + 1];
if (!inner_id->isRFactorProduct()) {
inner_id = replaceRootIdWithRFactor(root_domain, inner_id);
}
TORCH_INTERNAL_ASSERT(
outer_id->start()->isZeroInt() && inner_id->start()->isZeroInt(),
"Didn't expect to apply view transformations on an iter domain",
" starting at a non-zero position.");
auto merged_extent = mul(outer_id->extent(), inner_id->extent());
auto new_merged_id =
IterDomainBuilder(FusionGuard::getCurFusion()->zeroVal(), merged_extent)
.is_rfactor_domain(true)
.build();
IrBuilder::create<Merge>(new_merged_id, outer_id, inner_id);
current_transformed_domain.erase(
current_transformed_domain.begin() + index_);
current_transformed_domain.erase(
current_transformed_domain.begin() + index_);
current_transformed_domain.insert(
current_transformed_domain.begin() + index_, new_merged_id);
}
};
//! The split tranformation creates two new iterDomains via an outer split.
class SplitTransform final : public ViewTransform {
public:
SplitTransform(const int64_t index, int64_t split_factor)
: ViewTransform(index), split_factor_(split_factor) {
TORCH_INTERNAL_ASSERT(
split_factor > 0,
"Split factors must be greater than 0, but found ",
split_factor,
" during view transformation.");
}
virtual std::string toString() const override {
std::stringstream ss;
ss << "Split Index at: " << index_ << " by: " << split_factor_ << std::endl;
return ss.str();
}
void createRfactorDomain(
std::vector<IterDomain*>& root_domain,
std::vector<IterDomain*>& current_transformed_domain) override {
TORCH_INTERNAL_ASSERT(
index_ < current_transformed_domain.size(),
"Index: \t",
index_,
"\t Domain Size:\t",
current_transformed_domain.size());
auto factor = IrBuilder::create<Int>(split_factor_);
IterDomain* id = current_transformed_domain[index_];
if (!id->isRFactorProduct()) {
id = replaceRootIdWithRFactor(root_domain, id);
}
TORCH_INTERNAL_ASSERT(
id->start()->isZeroInt(),
"Didn't expect to apply view transformations on an iter domain",
" starting at a non-zero position.");
Val* remainder = ceilDiv(id->extent(), factor);
// outer loop IterDomain
IterDomain* factor_id =
IterDomainBuilder(FusionGuard::getCurFusion()->zeroVal(), factor)
.parallel_type(id->getParallelType())
.iter_type(id->getIterType())
.is_rfactor_domain(true)
.build();
// inner loop IterDomain
IterDomain* remainder_id =
IterDomainBuilder(
FusionGuard::getCurFusion()->zeroVal(), remainder->as<Int>())
.is_rfactor_domain(true)
.build();
IrBuilder::create<Split>(factor_id, remainder_id, id, factor, false);
current_transformed_domain.erase(
current_transformed_domain.begin() + index_);
current_transformed_domain.insert(
current_transformed_domain.begin() + index_, remainder_id);
current_transformed_domain.insert(
current_transformed_domain.begin() + index_, factor_id);
}
int64_t split_factor() const {
return split_factor_;
}
private:
const int64_t split_factor_ = 0;
};
//! For any singleton dimensions in the new view, we create an implicit
//! broadcast dimension. We apply these transforms after the trivial reduction
//! and view transformation steps.
class BroadcastTransform final : public Transform {
public:
BroadcastTransform(int64_t index) : Transform(index) {}
virtual std::string toString() const override {
std::stringstream ss;
ss << "Broadcast at: " << index_ << std::endl;
return ss.str();
}
};
//! For any implicit broadcast dimensions in the original view, we remove
//! them using a trivial reduction.
class TrivialReductionTransform final : public Transform {
public:
TrivialReductionTransform(int64_t index) : Transform(index) {}
virtual std::string toString() const override {
std::stringstream ss;
ss << "Trivial reduction at: " << index_ << std::endl;
return ss.str();
}
};
//! The primary class that generates the transformations to go from
//! the original view to the new view.
class AnalyzeViewTransformation {
public:
AnalyzeViewTransformation(
const std::vector<int64_t>& original_view,
const std::vector<int64_t>& new_view,
std::vector<IterDomain*> root_domain = {})
: root_domain_not_provided_(root_domain.empty()),
root_domain_(root_domain),
root_is_transformed_(original_view.size(), false),
original_view_(original_view),
new_view_(new_view) {
TORCH_INTERNAL_ASSERT(
root_domain.empty() || original_view.size() == root_domain.size(),
"Incoming domain must match the original view sizes for view.");
// Check that the product of original and new view std::vector<int64_t> are
// equal.
const int64_t kOriginalNumElements = std::accumulate(
original_view_.begin(), original_view_.end(), 1, std::multiplies<>());
const int64_t kNewNumElements = std::accumulate(
new_view_.begin(), new_view.end(), 1, std::multiplies<>());
TORCH_INTERNAL_ASSERT(
kOriginalNumElements == kNewNumElements,
"Total element counts across view operation must match.");
}
AnalyzeViewConstraint constraint() {
findTransformation();
AnalyzeViewConstraint constraint;
constraint.original_constraint =
std::vector<int64_t>(original_view_.begin(), original_view_.end());
for (auto i : c10::irange(constraint.original_constraint.size())) {
if (constraint.original_constraint[i] != 1) {
constraint.original_constraint[i] = 0;
}
}
constraint.new_constraint =
std::vector<int64_t>(new_view_.begin(), new_view_.end());
for (auto i : c10::irange(constraint.new_constraint.size())) {
if (constraint.new_constraint[i] != 1) {
constraint.new_constraint[i] = 0;
}
}
for (auto trivial_reduce : trivial_reduction_transforms_) {
constraint.trivial_reduction_string.push_back(trivial_reduce->index());
}
for (auto broadcast : broadcast_transforms_) {
constraint.broadcast_string.push_back(broadcast->index());
}
// Dilimeter for split/merge transforms is -2
for (auto split_merge : view_transforms_) {
if (split_merge->isA<SplitTransform>()) {
constraint.split_merge_string.push_back(split_merge->index());
constraint.split_merge_string.push_back(
split_merge->as<SplitTransform>()->split_factor());
constraint.split_merge_string.push_back(-2);
} else {
TORCH_INTERNAL_ASSERT(
split_merge->isA<MergeTransform>(),
"Unrecognized transformation found.");
constraint.split_merge_string.push_back(split_merge->index());
constraint.split_merge_string.push_back(-2);
}
}
return constraint;
}
// Fill out all the information needed in AnalyzeViewResult, this should
// contain all the information of what's required to perform the view
// operation.
AnalyzeViewResult run() {
// Find all the transformations to go from the original tensor domain to the
// final output of the view operations.
findTransformation();
auto trivial_reduction_axes = generateTrivialReductionAxes();
auto broadcast_axes = generateBroadcastAxes();
// Move data to AnalyzeViewResult and return it.
return {broadcast_axes, trivial_reduction_axes, view_transforms_};
}
private:
// Returns the bool flags that should be used to broadcast the output view
// tensor
std::vector<bool> generateBroadcastAxes() {
std::vector<bool> broadcast_axes(new_view_.size(), false);
for (auto& bcast : broadcast_transforms_) {
broadcast_axes.at(bcast->index()) = true;
}
return broadcast_axes;
}
// Returns the positions for the trivial reductions to be performed before the
// view operation
std::vector<int> generateTrivialReductionAxes() {
std::vector<int> reduction_axes;
for (auto& tred : trivial_reduction_transforms_) {
reduction_axes.push_back(tred->index());
}
return reduction_axes;
}
std::string toString() {
std::stringstream output;
output << "===============================" << std::endl;
output << "old:";
for (auto s : original_view_) {
output << " " << s;
}
output << std::endl;
output << "===============================" << std::endl;
output << "new:";
for (auto s : new_view_) {
output << " " << s;
}
output << std::endl;
output << "===============================" << std::endl;
for (auto& trivial_reduction : trivial_reduction_transforms_) {
output << trivial_reduction->toString() << "\n";
}
for (auto& split_or_merge : view_transforms_) {
output << split_or_merge->toString() << "\n";
}
for (auto& broadcast : broadcast_transforms_) {
output << broadcast->toString() << "\n";
}
output << "===============================" << std::endl;
return output.str();
}
// Validation check after transformations are all found
bool isImplicitBroadcast(int64_t original_view_index) const {
if (root_domain_not_provided_) {
return original_view_[original_view_index] == 1;
} else {
TORCH_INTERNAL_ASSERT(original_view_index < root_domain_.size());
return root_domain_[original_view_index]->isImplicitBroadcast() &&
!root_domain_[original_view_index]->hasExpandedExtent();
}
}
//! Find the broadcast, merge and split operations necessary
//! to transform the original view into the new view
void findTransformation() {
// There are three particularly important state indices we're working with.
// There is:
// 1) original_view_index which is indexing into the original tensor
// domain after all reductions are removed. This lines up with the last
// domain in original view that we added to current_size.
// 2) transform_view_index which is the index of the transformations as
// we're virtually "developing" the output tensor domain (split/merge
// transformations post trivial reductions).
// 3) The new_view_index which is directly associated with the new_view
// and the dimension in new_view we're currently trying to create.
int64_t original_view_index = 0;
int64_t transform_view_index = 0;
int64_t new_view_index = 0;
int64_t current_size = original_view_[0];
// Safety counters to make sure we don't end up in an infinite loop.
int64_t prev_original_view_index = std::numeric_limits<int64_t>::max();
int64_t prev_new_view_index = std::numeric_limits<int64_t>::max();
TORCH_INTERNAL_ASSERT(
view_transforms_.empty(),
"Already ran find transformation pass for View op, cannot run a second time.");
// Iterate until original view is completely consumed and new view is
// completely generated.
while (original_view_index < original_view_.size() ||
new_view_index < new_view_.size()) {
TORCH_INTERNAL_ASSERT(
!(prev_new_view_index == new_view_index &&
prev_original_view_index == original_view_index),
"Infinite loop detected in AnalyzeViewTransformation::findTransformation(). Bailing.");
prev_new_view_index = new_view_index;
prev_original_view_index = original_view_index;
if (new_view_index >= new_view_.size()) {
TORCH_INTERNAL_ASSERT(
current_size == 1,
"View is complete, but there's still some elements to distribute.");
}
if ((new_view_index == new_view_.size() ||
(new_view_[new_view_index + 1] != 1)) &&
original_view_index + 1 < original_view_.size() &&
original_view_[original_view_index + 1] == 1 &&
!isImplicitBroadcast(original_view_index + 1)) {
// Next index in original_view is runtime size 1 and next new view is
// not, merge the size 1 into the current view before moving on. Even if
// the current size and new view size match we could have a trailing
// size 1 dimension on the input that needs to be merged in.
view_transforms_.push_back(
std::make_shared<MergeTransform>(transform_view_index));
++original_view_index;
continue;
}
if (new_view_index < new_view_.size() &&
// Still new dimensions to resolve and current size does resolve it.
current_size == new_view_[new_view_index]) {
// Keep this dimension, it's good to go, we hit a boundary where there's
// a multiple of original dims, that matches a multiple of view dims.
// Increment state and keep going.
++transform_view_index;
++new_view_index;
++original_view_index;
// Update current_size with the next size in original view
if (original_view_index < original_view_.size()) {
current_size = original_view_[original_view_index];
} else {
current_size = 0;
}
continue;
}
// Compile time broadcast in new view, but not a matching one in original
// view. Insert broadcast and increment new_view. Size 1 dimensions in
// new_view that don't match up with runtime size 1's in original view are
// assumed to be broadcast (not a split from a runtime domain).
if (new_view_index < new_view_.size() && new_view_[new_view_index] == 1) {
broadcast_transforms_.push_back(
std::make_shared<BroadcastTransform>(new_view_index));
++new_view_index;
continue;
}
// If we run out of original_view dimensions we could still have broadcast
// dimensions for new_view, but that should be hit before this point.
TORCH_INTERNAL_ASSERT(
current_size != 0,
"View analysis failed, should never process an empty size unless we ",
"simply need to add broadcasts to the post-view domain.");
if (current_size == 1 && isImplicitBroadcast(original_view_index)) {
// Original view has a compile time size 1 dimension, and it's not found
// in the new_view_ (otherwise would have been caught in a branch
// above). Do a trivial reduction.
trivial_reduction_transforms_.push_back(
std::make_shared<TrivialReductionTransform>(original_view_index));
++original_view_index;
// Update original position and current size.
if (original_view_index < original_view_.size()) {
current_size = original_view_[original_view_index];
} else {
current_size = 0;
}
continue;
}
if (original_view_index + 1 < original_view_.size() &&
isImplicitBroadcast(original_view_index + 1)) {
// Original view has a compile time size 1 dimension, and it's
// interfering with necessary transformations. Do a trivial reduction.
++original_view_index;
trivial_reduction_transforms_.push_back(
std::make_shared<TrivialReductionTransform>(original_view_index));
continue;
}
// We're only left with performing transformations to match a new_view
// dimension, there must be an activew new_view.
TORCH_INTERNAL_ASSERT(
new_view_index < new_view_.size(),
"Expecting to still have new dimensions to work on in view, but none left.");
if (new_view_index < new_view_.size() &&
current_size % new_view_[new_view_index] == 0) {
// Insert split to generate the next new_view domain.
view_transforms_.push_back(std::make_shared<SplitTransform>(
transform_view_index, new_view_[new_view_index]));
current_size /= new_view_[new_view_index];
TORCH_INTERNAL_ASSERT(current_size > 1, "This should be unreachable.");
// Update transform and new since a split doesn't increment from the
// original domain we're working on.
++transform_view_index;
++new_view_index;
continue;
}
// Need more of the original_view dimension to resolve the new_view
// dimension, merge the next dimension in.
TORCH_INTERNAL_ASSERT(
original_view_index + 1 < original_view_.size(),
"Expecting to still have original dimensions to work on in view, but none left.");
view_transforms_.push_back(
std::make_shared<MergeTransform>(transform_view_index));
current_size *= original_view_[++original_view_index];
}
}
private:
std::vector<std::shared_ptr<ViewTransform>> view_transforms_;
std::vector<std::shared_ptr<BroadcastTransform>> broadcast_transforms_;
std::vector<std::shared_ptr<TrivialReductionTransform>>
trivial_reduction_transforms_;
// If root domain isn't provided always assume size-1 dimensions are
// compile-time dimensions. TODO: Remove runtime size-1 dimension support.
// This should be cached higher in the stack.
const bool root_domain_not_provided_ = true;
const std::vector<IterDomain*> root_domain_;
// Track if the root ID was transformed or kept ()
std::vector<bool> root_is_transformed_;
const std::vector<int64_t>& original_view_;
const std::vector<int64_t>& new_view_;
};
//! Create new TensorDomain with a new root domain and modified rfactor domains
//! using the specified view transformations. Original domain should already be
//! without reduction axes.
TensorDomain* createViewDomain(
TensorDomain* original_domain,
const AnalyzeViewResult& view_analysis) {
FUSER_PERF_SCOPE("createViewDomain");
TORCH_INTERNAL_ASSERT(!view_analysis.transforms.empty());
std::vector<IterDomain*> new_root_domain;
auto orig_root_domain = original_domain->getMaybeRFactorDomain();
// Apply trivial reductions.
for (auto id_i : c10::irange(orig_root_domain.size())) {
auto id = orig_root_domain[id_i];
if (id->isReduction()) {
continue;
}
if (std::find(
view_analysis.trivial_reduction_axes.begin(),
view_analysis.trivial_reduction_axes.end(),
(int)id_i) != view_analysis.trivial_reduction_axes.end()) {
continue;
}
new_root_domain.push_back(id->cloneWithoutRFactor());
}
std::vector<IterDomain*> new_rfactor_domain(
new_root_domain.begin(), new_root_domain.end());
// Apply rfactor transformations.
for (auto& t : view_analysis.transforms) {
t->createRfactorDomain(new_root_domain, new_rfactor_domain);
}
return IrBuilder::create<TensorDomain>(
new_root_domain,
new_rfactor_domain,
new_rfactor_domain,
std::vector<bool>(new_rfactor_domain.size(), true));
}
} // namespace
std::pair<std::vector<int64_t>, std::vector<int64_t>> inferViewShapes(
const std::vector<int64_t>& original_sizes,
const std::vector<int64_t>& new_sizes) {
bool valid_original_sizes = std::all_of(
original_sizes.begin(), original_sizes.end(), [](int64_t dim) {
return dim > 0;
});
TORCH_INTERNAL_ASSERT(valid_original_sizes);
std::vector<int64_t> original_view(
original_sizes.begin(), original_sizes.end());
std::vector<int64_t> new_view(new_sizes.size());
// TODO: refactor
int64_t dynamic_index = -1;
int64_t new_size_num_elements = 1;
for (int64_t idx = 0; idx < new_sizes.size(); ++idx) {
if (new_sizes[idx] == -1) {
TORCH_INTERNAL_ASSERT(
dynamic_index == -1, "Only one dimension can by inferred.")
dynamic_index = idx;
} else {
TORCH_INTERNAL_ASSERT(new_sizes[idx] > 0);
new_size_num_elements *= new_sizes[idx];
new_view[idx] = new_sizes[idx];
}
}
const int64_t kNumElements = std::accumulate(
original_view.begin(), original_view.end(), 1, std::multiplies<>());
if (dynamic_index != -1) {
new_view[dynamic_index] = kNumElements / new_size_num_elements;
}
return {original_view, new_view};
}
//! Generates the transformations necessary to convert
//! from the original view into the new view.
AnalyzeViewResult analyzeView(
const TensorView* original_view_tv,
const std::vector<int64_t>& original_sizes,
const std::vector<int64_t>& new_sizes) {
FUSER_PERF_SCOPE("analyzeView");
TORCH_INTERNAL_ASSERT(
original_sizes.size() > 0,
"Empty original size not supported for view operatioon.");
TORCH_INTERNAL_ASSERT(
TensorDomain::noReductions(original_view_tv->getMaybeRFactorDomain())
.size() == original_sizes.size());
// Fill -1 dimension in new_std::vector<int64_t> with size infered from all
// other values
auto sizes = inferViewShapes(original_sizes, new_sizes);
// Analysize the transformations required to go from original_sizes to
// new_sizes
AnalyzeViewTransformation analyzer(
sizes.first /* original_view */,
sizes.second /* new_view */,
TensorDomain::noReductions(original_view_tv->getMaybeRFactorDomain()));
return analyzer.run();
}
AnalyzeViewConstraint analyzeViewConstraint(
const std::vector<int64_t>& original_sizes,
const std::vector<int64_t>& new_sizes) {
FUSER_PERF_SCOPE("analyzeViewConstraint");
auto sizes = inferViewShapes(original_sizes, new_sizes);
AnalyzeViewTransformation analyzer(
sizes.first /* original_view */, sizes.second /* new_view */);
return analyzer.constraint();
}
//! Create new TensorDomain with a modified rfactor domain using the specified
//! view transformations
TensorDomain* transformView(
TensorDomain* original_domain,
const AnalyzeViewResult& view_analysis) {
FUSER_PERF_SCOPE("transformView");
return createViewDomain(original_domain, view_analysis);
}
} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch
|