File: transform_view.h

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (124 lines) | stat: -rw-r--r-- 4,264 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
#pragma once

#include <c10/macros/Export.h>

#include <torch/csrc/jit/codegen/cuda/ir_all_nodes.h>

#include <memory>
#include <vector>

namespace torch {
namespace jit {
namespace fuser {
namespace cuda {

class ViewTransform;

//!
//! The goal of analyzeView is to find the minimum number of transformations
//! to convert from the original size to the new size. A naive view algorithm
//! would merge all axis together and then split according to the new sizes.
//!
//! This implementation will keep the original domains, if the domains are the
//! same size in the original and new shapes. If an original domain is not
//! evenly divisible by the new domain, we will merge the minimum number of
//! adjacent original domains.
//!
//! The view transformations are processed in the following order:
//! 1. Trivial Reductions - Removes size-1 broadcast dimensions
//! 2. Keep, Merge, Split - Used to create new rfactor domain
//! 3. Broadcast - Inserts size-1 dimensions
//!
//! Broadcast is handled last because size-1 dimension can be inserted anywhere
//! in the new shape.
//!

struct AnalyzeViewResult {
  std::vector<bool> broadcast_axes;
  std::vector<int> trivial_reduction_axes;
  std::vector<std::shared_ptr<ViewTransform>> transforms;
};

struct TORCH_API AnalyzeViewConstraint {
  // 1 if size 1 dimension, otherwise 0;
  std::vector<int64_t> original_constraint;
  std::vector<int64_t> new_constraint;
  // Just the positions of true in AnalyzeViewResult::trivial_reduction_axes
  std::vector<int64_t> trivial_reduction_string;
  // Just the positions of true in AnalyzeViewResult:broadcast_axes
  std::vector<int64_t> broadcast_string;
  // A stringified version of the transformations:
  std::vector<int64_t> split_merge_string;

  std::vector<int64_t> conglomerateString() const {
    // Don't think this is necessary but just being safe. Using
    // -3 as a dilimeter between value groups.
    std::vector<int64_t> conglomerate = {
        (int64_t)original_constraint.size(),
        (int64_t)new_constraint.size(),
        -3};
    auto add_vec = [&conglomerate](const std::vector<int64_t>& vec) {
      for (auto element : vec) {
        conglomerate.push_back(element);
      }
      // TODO: Why doesn't this work?
      // conglomerate.insert(conglomerate.back(), vec.begin(), vec.end());
      conglomerate.push_back(-3);
    };
    add_vec(original_constraint);
    add_vec(new_constraint);
    add_vec(trivial_reduction_string);
    add_vec(broadcast_string);
    add_vec(split_merge_string);
    return conglomerate;
  }

  bool operator==(const AnalyzeViewConstraint& other) const {
    return other.conglomerateString() == this->conglomerateString();
  }

  // Naive hashing function, likely has a lot of collisions, but may not matter
  // too much if we don't expact many types of views.
  size_t hash() {
    size_t hash_value = 0;
    for (auto val : conglomerateString()) {
      if (val == std::numeric_limits<int64_t>::max()) {
        continue;
      }
      hash_value += val;
    }
    return hash_value;
  }
};

//! Infer -1 value in new view std::vector<int64_t> based on original view
//! std::vector<int64_t>. This shouldn't generally be used directly but is
//! useful for testing.
TORCH_CUDA_CU_API std::pair<std::vector<int64_t>, std::vector<int64_t>>
inferViewShapes(
    const std::vector<int64_t>& original_sizes,
    const std::vector<int64_t>& new_sizes);

// Find the transformations necessary to convert TensorView
// from original size to new size.
AnalyzeViewResult analyzeView(
    const TensorView* tv,
    const std::vector<int64_t>& original_sizes,
    const std::vector<int64_t>& new_sizes);

// Find the constraints derived from the view transformations
TORCH_CUDA_CU_API AnalyzeViewConstraint analyzeViewConstraint(
    const std::vector<int64_t>& original_sizes,
    const std::vector<int64_t>& new_sizes);

// Generate a new TensorDomain from the given view transformations.
// The original root domain is kept in the new TensorDomain,
// but a new rfactor domain is created from the view transformations.
TensorDomain* transformView(
    TensorDomain* original_domain,
    const AnalyzeViewResult& view_analysis);

} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch