File: arg_spec.h

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (60 lines) | stat: -rw-r--r-- 1,463 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
#pragma once
#include <ATen/ATen.h>
#include <ATen/core/functional.h> // fmap
#include <c10/util/hash.h>
#include <torch/csrc/Export.h>
#include <torch/csrc/jit/codegen/fuser/tensor_desc.h>

#include <cstdint>
#include <vector>

namespace torch {
namespace jit {
namespace fuser {

// Describes the (runtime) arguments to a kernel.
// ArgSpecs are also used as keys to lookup instantiated kernels, so
//  they are hashable.
// Note: the device to run on is included in the arg spec because kernels
//  are compiled per-device.
struct TORCH_API ArgSpec {
  // NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
  ArgSpec(at::TensorList inputs, const int _device)
      : descs_{c10::fmap<TensorDesc>(inputs)},
        hash_code_{c10::get_hash(_device, inputs.size(), descs_)},
        device_{_device} {}

  // (Common) hash function
  static size_t hash(const ArgSpec& spec) {
    return spec.hash_code_;
  }

  // Comparators
  bool operator==(const ArgSpec& other) const {
    return (descs_ == other.descs_ && device_ == other.device_);
  }

  bool operator!=(const ArgSpec& spec) const {
    return !(*this == spec);
  }

  // Getters
  size_t hashCode() const {
    return hash_code_;
  }
  const std::vector<TensorDesc>& descs() const {
    return descs_;
  }
  int device() const {
    return device_;
  }

 private:
  std::vector<TensorDesc> descs_;
  size_t hash_code_;
  int device_;
};

} // namespace fuser
} // namespace jit
} // namespace torch