1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
|
#include <torch/csrc/jit/codegen/fuser/codegen.h>
#include <ATen/ATen.h>
#include <ATen/code_template.h>
#include <c10/util/Exception.h>
#include <torch/csrc/jit/codegen/fuser/compiler.h>
#include <torch/csrc/jit/codegen/fuser/interface.h>
#include <torch/csrc/jit/codegen/fuser/tensor_info.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/codegen/fuser/cpu/resource_strings.h>
#include <torch/csrc/jit/codegen/fuser/cuda/resource_strings.h>
#include <cmath>
#include <cstdint>
#include <iostream>
#include <sstream>
#include <tuple>
#include <vector>
namespace torch {
namespace jit {
namespace fuser {
// Template for computing the offset into the tensor to access a value
static auto dim_calc = at::jit::CodeTemplate(R"(
//printf("tensor ${tensor} sizes[${d}] = %d, strides[${d}] = %d\n", ${tensor}.sizes[${d}],${tensor}.strides[${d}]);
size_t ${tensor}_dimIndex${d} = ${tensor}_linearIndex ${mod_sizes};
${tensor}_offset += ${tensor}_dimIndex${d} ${times_stride};
)");
static std::string valueName(const Value* n) {
return "n" + c10::to_string(n->unique());
}
static std::string scalarValue(const int64_t v) {
return c10::to_string(v);
}
static std::string scalarValue(const bool v) {
return c10::to_string(v);
}
// Note: The NAN, NEG_INFINITY and POS_INFINITY strings map to device-specific
// implementations of these special values. These macros are found in the
// resource strings for each device.
static std::string scalarValue(const double v) {
std::ostringstream out;
if (std::isnan(v)) {
out << "NAN";
} else if (std::isinf(v)) {
if (v < 0) {
out << "NEG_INFINITY";
} else {
out << "POS_INFINITY";
}
} else {
out << std::setprecision(16) << v;
}
return out.str();
}
// Note: Half is special-cased to avoid returning at::Half
static const char* scalarTypeName(const at::ScalarType type) {
if (type == at::ScalarType::Half) {
return "half";
}
if (type == at::ScalarType::BFloat16) {
return "__nv_bfloat16";
}
switch (type) {
#define DEFINE_CASE(ctype, name) \
case at::ScalarType::name: \
return #ctype;
AT_FORALL_SCALAR_TYPES_WITH_COMPLEX_AND_QINTS(DEFINE_CASE)
#undef DEFINE_CASE
default:
throw std::runtime_error("unknown scalar type");
}
}
static const char* calcScalarTypeName(const at::ScalarType type) {
if (type == at::ScalarType::Half) {
return "float";
}
if (type == at::ScalarType::BFloat16) {
return "float";
}
return scalarTypeName(type);
}
static std::string variableType(const c10::Type& t) {
if (t.kind() == TypeKind::IntType) {
return "int64_t";
} else if (t.kind() == TypeKind::FloatType) {
return "double";
} else if (t.kind() == TypeKind::BoolType) {
return "bool";
} else if (auto scalar_type = t.expectRef<TensorType>().scalarType()) {
return calcScalarTypeName(*scalar_type);
}
// something went wrong with the type analysis during shape propagation
throw std::runtime_error(
"unknown scalar type during JIT fusion code generation");
}
static std::string typeCastedValueName(
const c10::Type& t,
const at::ScalarType outtype,
const std::string& vn) {
if (t.kind() == TypeKind::IntType || t.kind() == TypeKind::BoolType) {
if (!isIntegralType(outtype, /*includeBool=*/false)) {
return std::string("((") + calcScalarTypeName(outtype) + ") " + vn + ")";
}
return vn;
} else if (t.kind() == TypeKind::FloatType) {
// We don't guard this on anything because in our type system for scalars,
// there is not a distinction between `float` and `double`, however there
// *is* a distinction in tensor scalar types. We conservatively insert a
// cast here, which may end up being a no-op if the tensor's scalar type
// is `double`.
return std::string("((") + calcScalarTypeName(outtype) + ") " + vn + ")";
} else if (t.kind() == TypeKind::NoneType) {
// Support None value for optional arguments like memory format
return vn;
} else if (auto scalar_type = t.expectRef<TensorType>().scalarType()) {
if (*scalar_type != outtype) {
return std::string("((") + calcScalarTypeName(outtype) + ") " + vn + ")";
}
return vn;
}
// something went wrong with the type analysis during shape propagation
throw std::runtime_error(
"unknown scalar type during JIT fusion code generation");
}
// Writes RHS of special handling "simple mappable" ops
static std::string encodeSpecialRHS(const Node* n, at::jit::TemplateEnv& env) {
// special case for clamp fusion on missing min/max inputs
// Note: It may seem unusual to have the bounds as the first case below,
// this is so that if min or max is NaN, they are "ignored"
// and when the input is NaN, the output is, too
if (n->kind() == aten::clamp) {
const auto min = n->input(1);
const auto max = n->input(2);
env.s("0", valueName(n->input(0)));
if (!min->node()->mustBeNone() && !max->node()->mustBeNone()) {
env.s("1", valueName(min));
env.s("2", valueName(max));
return format("(${0} < ${1} ? ${1} : (${0} > ${2}? ${2} : ${0}))", env);
} else if (min->node()->mustBeNone()) {
env.s("1", valueName(max));
return format("(${0} > ${1} ? ${1} : ${0})", env);
} else if (max->node()->mustBeNone()) {
env.s("1", valueName(min));
return format("(${0} < ${1} ? ${1} : ${0})", env);
} else {
throw std::runtime_error(
"At least one of 'min' or 'max' must not be None");
}
} else {
throw std::runtime_error("Cannot encode RHS of the node, op not supported");
}
}
// This struct specifies a template for dispatching specific aten:: operators.
// The current variants of RHS code selection we support are for double and
// float output values. For example, an aten::log operator which is assigned
// to a float value would emit logf(), whereas an aten::log operator which is
// assigned to a double would emit log().
struct RHSTemplate {
// Common case: float and double dispatch are identical
RHSTemplate(const char* for_float)
: for_float(for_float), for_double(for_float) {}
RHSTemplate(const char* for_float, const char* for_double)
: for_float(for_float), for_double(for_double) {}
const char* for_float;
const char* for_double;
};
// Writes "simple mappable" ops
static std::string encodeRHS(const Node* n) {
static std::unordered_map<NodeKind, RHSTemplate> simple_map_ops = {
// unary
{aten::_cast_Float, "static_cast<float>(${0})"},
{aten::abs, "fabs(${0})"},
{aten::sigmoid, {"1.f / (1.f + expf(-${0}))", "1. / (1. + exp(-${0}))"}},
{aten::relu, "${0} < 0 ? 0.f : ${0} "},
{aten::threshold,
"${0} <= ${1} ? static_cast<decltype(${0})>(${2}) : ${0} "},
{aten::log, {"logf(${0})", "log(${0})"}},
{aten::log10, {"log10f(${0})", "log10(${0})"}},
{aten::log1p, {"log1pf(${0})", "log1p(${0})"}},
{aten::log2, {"log2f(${0})", "log2(${0})"}},
{aten::lgamma, {"lgammaf(${0})", "lgamma(${0})"}},
{aten::exp, {"expf(${0})", "exp(${0})"}},
{aten::expm1, {"expm1f(${0})", "expm1(${0})"}},
{aten::erf, {"erff(${0})", "erf(${0})"}},
{aten::erfc, {"erfcf(${0})", "erfc(${0})"}},
{aten::cos, {"cosf(${0})", "cos(${0})"}},
{aten::acos, {"acosf(${0})", "acos(${0})"}},
{aten::cosh, {"coshf(${0})", "cosh(${0})"}},
{aten::sin, {"sinf(${0})", "sin(${0})"}},
{aten::asin, {"asinf(${0})", "asin(${0})"}},
{aten::sinh, {"sinhf(${0})", "sinh(${0})"}},
{aten::tan, {"tanf(${0})", "tan(${0})"}},
{aten::atan, {"atanf(${0})", "atan(${0})"}},
{aten::tanh, {"tanhf(${0})", "tanh(${0})"}},
{aten::sqrt, {"sqrtf(${0})", "sqrt(${0})"}},
{aten::rsqrt, {"rsqrtf(${0})", "rsqrt(${0})"}},
{aten::ceil, {"ceilf(${0})", "ceil(${0})"}},
{aten::floor, {"floorf(${0})", "floor(${0})"}},
{aten::round, {"roundf(${0})", "round(${0})"}},
{aten::trunc, {"truncf(${0})", "trunc(${0})"}},
{aten::frac, {"${0} - truncf(${0})", "${0} - trunc(${0})"}},
{aten::reciprocal, {"1.f/(${0})", "1./(${0})"}},
{aten::neg, "-${0}"},
// simple binary
{aten::atan2, "atan2(${0}, ${1})"},
{aten::min,
"isnan(${0}) ? ${0} : (isnan(${1}) ? ${1} : (${0} < ${1} ? ${0} : ${1}))"},
{aten::max,
"isnan(${0}) ? ${0} : (isnan(${1}) ? ${1} : (${0} < ${1} ? ${1} : ${0}))"},
// binary with other
// TODO: some of these ops will not get generated because
// we only work on float inputs/outputs, but they are here to record
// that they are valid mappable ops once we handle more type
{aten::__and__, "${0} && ${1}"},
{aten::__lshift__, "${0} << ${1}"},
{aten::__or__, "${0} || ${1}"},
{aten::__rshift__, "${0} >> ${1}"},
{aten::__xor__, "${0} ^ ${1}"},
{aten::addcmul, "${0} + ${3} * ${1} * ${2}"},
{aten::div, "${0} / ${1}"},
{aten::eq, "${0_nocast} == ${1_nocast}"},
{aten::fmod, "fmodf(${0}, ${1})"},
{aten::ge, "(${0_nocast} >= ${1_nocast})"},
{aten::gt, "${0_nocast} > ${1_nocast}"},
{aten::le, "(${0_nocast} <= ${1_nocast})"},
{aten::lt, "${0_nocast} < ${1_nocast}"},
{aten::lerp, "${0} + ${2} * (${1} - ${0})"},
{aten::type_as, "(${0})"},
{aten::mul, "${0} * ${1}"},
{aten::ne, "${0_nocast} != ${1_nocast}"},
{aten::remainder, "fmod((${1} + fmod(${0}, ${1})), ${1})"},
{aten::pow, {"powf(${0}, ${1})", "pow(${0}, ${1})"}},
// alpha
{aten::add, "${0} + ${2}*${1}"},
{aten::sub, "(${0} - ${2}*${1})"},
{aten::rand_like, "uniform(rnd())"},
// where
{aten::where, "(${0} ? ${1} : ${2})"},
};
at::jit::TemplateEnv env;
if (simple_map_ops.find(n->kind()) == simple_map_ops.end()) {
return encodeSpecialRHS(n, env);
} else {
size_t i = 0;
auto outtype = n->output()->type()->expectRef<TensorType>().scalarType();
TORCH_INTERNAL_ASSERT(outtype);
for (auto in : n->inputs()) {
// PyTorch converts (scalar) argument types to result before applying the
// operator e.g. 1.4-torch.tensor(3) = -2
env.s(
c10::to_string(i),
typeCastedValueName(*in->type(), *outtype, valueName(in)));
// Uncasted operands only used for comparison operators
env.s(c10::to_string(i) + "_nocast", valueName(in));
i++;
}
const auto& templ = simple_map_ops.at(n->kind());
const char* str = nullptr;
if (*outtype == at::kFloat) {
str = templ.for_float;
} else {
str = templ.for_double;
}
AT_ASSERT(str);
return format(str, env);
}
}
static void emitIndexingFor(
std::ostream& out,
const std::string& tensor,
const int ndim,
const bool last_is_cont) {
at::jit::TemplateEnv env;
env.s("tensor", tensor);
out << format("IndexType ${tensor}_offset = 0;\n", env);
out << format("IndexType ${tensor}_linearIndex = linearIndex;\n", env);
for (int d = ndim - 1; d >= 0; --d) {
env.d("d", d);
env.s("mod_sizes", d > 0 ? format("% ${tensor}.sizes[${d}]", env) : "");
env.s(
"times_stride",
(d < ndim - 1 || !last_is_cont)
? format("* ${tensor}.strides[${d}]", env)
: "");
out << dim_calc.format(env);
if (d > 0) {
out << format("${tensor}_linearIndex /= ${tensor}.sizes[${d}];\n", env);
}
}
}
static void emitCheckFor(
std::ostream& out,
const std::string& tensor,
const int ndim,
const TensorDesc& desc) {
at::jit::TemplateEnv env;
env.s("tensor", tensor);
env.s("scalar_type", scalarTypeName(desc.scalar_type));
// allocate buffer to load 4
out << format("${scalar_type} ${tensor}_buf[4];\n", env);
// check if last dim is contiguous
if (!desc.lastIsContiguous()) {
out << "flag_vec4 = false;\n";
return;
}
// disable on dtype > 4 bytes for performance
if (at::elementSize(desc.scalar_type) > 4) {
out << "flag_vec4 = false;\n";
return;
}
// last dim size multiple of 4, other dim stride multiple of 4
for (int d = ndim - 1; d >= 0; --d) {
env.d("d", d);
if (d == ndim - 1) {
// last dim stride already checked above at compile time
out << format(
"if(${tensor}.sizes[${d}] % 4 != 0) flag_vec4 = false;\n", env);
} else {
out << format(
"if(${tensor}.strides[${d}] % 4 != 0) flag_vec4 = false;\n", env);
}
}
// pointer aligned
out << format(
"if(((uint64_t) ${tensor}.data) % (4 * sizeof(${scalar_type})) != 0) flag_vec4 = false;\n",
env);
}
// TODO: handle cases where we need to generate > 2^32 element tensors
std::string generateKernel(
const std::string& name,
const Graph& graph,
const std::vector<std::pair<const Value*, const c10::optional<TensorDesc>>>&
inputs,
const std::vector<std::pair<const Value*, const TensorDesc>>& outputs,
const bool use_cuda) {
at::jit::TemplateEnv env;
env.s("kernelName", name);
env.s(
"IndexType",
"unsigned int"); // Note: not uint32_t to avoid including cstdint
std::stringstream tensorChecks;
std::stringstream body;
std::stringstream body_vec4;
std::stringstream load;
std::stringstream store;
std::stringstream tensorOffsets;
std::vector<std::string> formals;
std::vector<std::string> argument_loads;
// Lambda for writing arguments
auto emitFormal = [&](const Value* n, const TensorDesc& desc) {
env.d(
"formal_index",
formals.size() +
1); // + 1 because the first argument is the linearIndex
std::string tensor =
"t" +
c10::to_string(
formals.size()); // can't be unique() because Param may be an output
const auto nDim = desc.nDim();
emitCheckFor(tensorChecks, tensor, nDim, desc);
emitIndexingFor(tensorOffsets, tensor, nDim, desc.lastIsContiguous());
env.s("tensor", tensor);
env.d("nDim", nDim);
env.s("scalar_type", scalarTypeName(desc.scalar_type));
formals.push_back(
format("const TensorInfo<${scalar_type},${nDim}> ${tensor}", env));
argument_loads.push_back(format(
"*static_cast<TensorInfo<${scalar_type},${nDim}>*>(args[${formal_index}])",
env));
};
auto emitScalarFormal = [&](const Value* n) {
env.d(
"formal_index",
formals.size() +
1); // + 1 because the first argument is the linearIndex
std::string scalar =
"s" +
c10::to_string(
formals.size()); // can't be unique() because Param may be an output
env.d(
"formal_index",
formals.size() +
1); // + 1 because the first argument is the linearIndex
env.s("scalar", scalar);
env.s("scalar_type", variableType(*n->type()));
formals.push_back(format("${scalar_type} ${scalar}", env));
argument_loads.push_back(
format("*static_cast<${scalar_type}*>(args[${formal_index}])", env));
};
// Writes input parameters
for (const auto& input : inputs) {
if (input.second.has_value()) {
emitFormal(input.first, *input.second);
} else {
emitScalarFormal(input.first);
}
}
// Writes output parameters
for (const auto& output : outputs) {
emitFormal(output.first, output.second);
}
// Acquires input values
bool has_half_tensor = false;
bool has_bfloat_tensor = false;
size_t formal_count = 0;
for (const auto& input : inputs) {
auto p = input.first;
env.s("node", valueName(p));
env.d("formal", formal_count++);
// Acquires and converts (if needed) inputs
// Note: conversion from half is only supported for CUDA kernels.
// The conversion immediately converts fp16 inputs to float.
// Access for other types is common to CUDA and CPU kernels.
if (input.second.has_value()) {
const auto is_half = input.second.has_value() &&
((*input.second).scalar_type == at::ScalarType::Half);
const auto is_bfloat = input.second.has_value() &&
((*input.second).scalar_type == at::ScalarType::BFloat16);
const auto is_bool = input.second.has_value() &&
((*input.second).scalar_type == at::ScalarType::Bool);
if (is_half) {
AT_ASSERT(use_cuda);
env.s(
"access",
format("__half2float(t${formal}.data[t${formal}_offset])", env));
env.s("access_vec4", format("__half2float(t${formal}_buf[i])", env));
has_half_tensor = true;
} else if (is_bfloat) {
AT_ASSERT(use_cuda);
env.s(
"access",
format(
"__bfloat162float(t${formal}.data[t${formal}_offset])", env));
env.s(
"access_vec4", format("__bfloat162float(t${formal}_buf[i])", env));
has_bfloat_tensor = true;
} else if (use_cuda) {
// No __ldg overload for bool
if (is_bool) {
env.s("access", format("t${formal}.data[t${formal}_offset]", env));
} else {
env.s(
"access",
format("__ldg(&t${formal}.data[t${formal}_offset])", env));
}
env.s("access_vec4", format("t${formal}_buf[i]", env));
} else {
env.s("access", format("t${formal}.data[t${formal}_offset]", env));
env.s("access_vec4", format("t${formal}_buf[i]", env));
}
env.s("lhs_type", calcScalarTypeName(input.second.value().scalar_type));
// load input in vectorized code path
auto ele_size = at::elementSize((*input.second).scalar_type);
if (ele_size == 1) {
env.s(
"load4",
format(
"*(reinterpret_cast<float*>(t${formal}_buf)) = *(reinterpret_cast<float*>(t${formal}.data + t${formal}_offset))",
env));
} else if (ele_size == 2) {
env.s(
"load4",
format(
"*(reinterpret_cast<float2*>(t${formal}_buf)) = *(reinterpret_cast<float2*>(t${formal}.data + t${formal}_offset))",
env));
} else if (ele_size == 4) {
env.s(
"load4",
format(
"*(reinterpret_cast<float4*>(t${formal}_buf)) = *(reinterpret_cast<float4*>(t${formal}.data + t${formal}_offset))",
env));
} else {
env.s(
"load4",
format(
"for(int i = 0; i<4; i++) t${formal}_buf[i] = t${formal}.data[t${formal}_offset + i]",
env));
}
load << format("${load4};\n", env);
} else {
env.s("access", format("s${formal}", env));
env.s("access_vec4", format("s${formal}", env));
env.s("lhs_type", variableType(*input.first->type()));
}
body << format("${lhs_type} ${node} = ${access};\n", env);
body_vec4 << format("${lhs_type} ${node} = ${access_vec4};\n", env);
}
bool has_random = false;
// Generates code for intermediate nodes
// Note: Concat and Chunk are implicitly generated
// Note: Random number generation is only supported for CUDA kernels.
// Note: Constant None node is ignored and we will handle it in the
// places where the constant None node is used
// Note: No need to iterate over reference as n is a pointer
for (const auto n : graph.nodes()) {
static_assert(std::is_pointer<decltype(n)>::value, "n must be a pointer");
// Note: FusedConcat nodes work by narrowing the output Tensors before the
// kernel runs
if (n->kind() == prim::FusedConcat)
continue;
if (n->kind() == prim::ConstantChunk)
continue;
if (n->mustBeNone())
continue;
if (n->kind() == aten::rand_like) {
AT_ASSERT(use_cuda);
has_random = true;
}
// Always emit double for prim::Constant. This will be narrowed later based
// on either:
// - Tensor-Scalar operator type rules
// - Math function rules
if (n->kind() == prim::Constant) {
const auto val = toIValue(n->output()).value();
std::string rhs;
if (val.isDouble()) {
rhs = scalarValue(val.toDouble());
} else if (val.isBool()) {
rhs = scalarValue(val.toBool());
} else {
AT_ASSERT(val.isInt());
rhs = scalarValue(val.toInt());
}
env.s("node", valueName(n->output()));
env.s("rhs", rhs);
env.s("lhs_type", variableType(*n->output()->type()));
} else {
env.s("node", valueName(n->output()));
env.s("rhs", encodeRHS(n));
env.s("lhs_type", variableType(*n->output()->type()));
}
body << format("${lhs_type} ${node} = ${rhs};\n", env);
body_vec4 << format("${lhs_type} ${node} = ${rhs};\n", env);
}
// Generates writes to output tensors
for (const auto& output : outputs) {
env.d("formal", formal_count++);
env.s("access", format("t${formal}.data[t${formal}_offset]", env));
env.s("access_vec4", format("t${formal}_buf[i]", env));
env.s("node", valueName(output.first));
// Acquires and converts (if needed) outputs
// Note: conversion to half is only supported for CUDA kernels.
const auto is_half = (output.second.scalar_type == at::ScalarType::Half);
const auto is_bfloat =
(output.second.scalar_type == at::ScalarType::BFloat16);
if (is_half) {
AT_ASSERT(use_cuda);
body << format("${access} = __float2half(${node});\n", env);
body_vec4 << format("${access_vec4} = __float2half(${node});\n", env);
has_half_tensor = true;
} else if (is_bfloat) {
AT_ASSERT(use_cuda);
body << format("${access} = __float2bfloat16(${node});\n", env);
body_vec4 << format("${access_vec4} = __float2bfloat16(${node});\n", env);
has_bfloat_tensor = true;
} else {
body << format("${access} = ${node};\n", env);
body_vec4 << format("${access_vec4} = ${node};\n", env);
}
// store output in vectorized code path
auto ele_size = at::elementSize(output.second.scalar_type);
if (ele_size == 1) {
env.s(
"store4",
format(
"*(reinterpret_cast<float*>(t${formal}.data + t${formal}_offset)) = *(reinterpret_cast<float*>(t${formal}_buf))",
env));
} else if (ele_size == 2) {
env.s(
"store4",
format(
"*(reinterpret_cast<float2*>(t${formal}.data + t${formal}_offset)) = *(reinterpret_cast<float2*>(t${formal}_buf))",
env));
} else if (ele_size == 4) {
env.s(
"store4",
format(
"*(reinterpret_cast<float4*>(t${formal}.data + t${formal}_offset)) = *(reinterpret_cast<float4*>(t${formal}_buf))",
env));
} else {
env.s(
"store4",
format(
"for(int i = 0; i<4; i++) t${formal}.data[t${formal}_offset + i] = t${formal}_buf[i]",
env));
}
store << format("${store4};\n", env);
}
// Includes headers
// Note: CUDA kernels support halfs and random generation, CPU kernels do not
if (has_half_tensor) {
env.s("HalfHeader", cuda::half_support_literal);
} else {
env.s("HalfHeader", "");
}
if (has_bfloat_tensor) {
env.s("BFloat16Header", cuda::bfloat16_support_literal);
} else {
env.s("BFloat16Header", "");
}
if (has_random) {
env.s("RandHeader", cuda::rand_support_literal);
env.s("RandParam", cuda::rand_param);
env.s("RandInit", cuda::rand_init);
} else {
env.s("RandHeader", "");
env.s("RandParam", "");
env.s("RandInit", "");
}
// HIP headers must be included until precompiled header feature is available
// clang-format off
#if defined(USE_ROCM)
#if ROCM_VERSION < 40200
if (use_cuda && has_half_tensor) {
env.s("RuntimeHeader", R"(
#include <hip/hip_runtime.h>
#include <hip/hip_fp16.h>
)");
} else if (use_cuda) {
env.s("RuntimeHeader", R"(
#include <hip/hip_runtime.h>
)");
}
#else
// Still need the key defined, but empty.
env.s("RuntimeHeader", R"()");
#endif
#endif
// clang-format on
// Instantiates the CUDA or CPU-specific templates
env.s("tensorOffsets", tensorOffsets.str());
env.s("tensorChecks", tensorChecks.str());
env.s("kernelBody", body.str());
env.s("kernelBody_vec4", body_vec4.str());
env.s("kernelLoad", load.str());
env.s("kernelStore", store.str());
env.v("formals", formals);
env.v("argument_loads", argument_loads);
std::string code_string;
if (use_cuda) {
env.s("type_declarations", cuda::type_declarations_template.format(env));
code_string = cuda::cuda_compilation_unit_template.format(env);
} else {
env.s("type_declarations", cpu::type_declarations_template.format(env));
code_string = cpu::cpu_compilation_unit_template.format(env);
}
if (debugFuser()) {
std::cerr << "fusion code:" << code_string << std::endl;
}
return code_string;
}
} // namespace fuser
} // namespace jit
} // namespace torch
|