1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
#include <torch/csrc/jit/codegen/fuser/cuda/fused_kernel.h>
#include <torch/csrc/jit/codegen/cuda/executor_utils.h>
#include <torch/csrc/jit/codegen/fuser/compiler.h>
#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/CUDAGeneratorImpl.h>
#include <ATen/cuda/nvrtc_stub/ATenNVRTC.h>
#include <c10/cuda/CUDAGuard.h>
#include <torch/csrc/jit/resource_guard.h>
#include <cuda_runtime.h>
#include <algorithm>
#include <cmath>
#include <sstream>
#include <stdexcept>
#include <tuple>
#include <vector>
namespace torch {
namespace jit {
namespace fuser {
namespace cuda {
// See NOTE [ USE OF NVRTC AND DRIVER API ]
const at::cuda::NVRTC& nvrtc() {
return at::globalContext().getNVRTC();
}
// query codegen output arch and target
void codegenOutputQuery(
const cudaDeviceProp* const prop,
int& major,
int& minor,
bool& compile_to_sass) {
#ifdef USE_ROCM
AT_CUDA_NVRTC_CHECK(nvrtc().nvrtcVersion(&major, &minor));
compile_to_sass = false;
#else
using CudaVersion = std::pair<int, int>;
CudaVersion nvrtc_version;
AT_CUDA_NVRTC_CHECK(
nvrtc().nvrtcVersion(&nvrtc_version.first, &nvrtc_version.second));
TORCH_CHECK(
nvrtc_version.first >= 6,
"NVRTC versions less than 6 are not supported. Is: ",
nvrtc_version.first);
// Version supported by device
// Usually any lower version works too but is less efficient
const CudaVersion dev_version = CudaVersion(prop->major, prop->minor);
// Maximum version supported by the driver, cap dev_version to this
CudaVersion max_dev_version;
if (nvrtc_version.first <= 7) { // 7 supports 2-5.x
max_dev_version = CudaVersion(5, 0);
} else if (nvrtc_version.first <= 8) { // 8 supports 2-6.x
max_dev_version = CudaVersion(6, 0);
} else if (nvrtc_version.first <= 9) { // 9 supports 3-7.2
max_dev_version = CudaVersion(7, 2);
} else if (nvrtc_version.first <= 10) { // 10 supports 3-7.5
max_dev_version = CudaVersion(7, 5);
} else if (nvrtc_version == CudaVersion(11, 0)) { // 11.0 supports 3-8.0
max_dev_version = CudaVersion(8, 0);
} else if (nvrtc_version.first == 11 && nvrtc_version.second < 8) {
max_dev_version = CudaVersion(8, 6);
} else {
// If the driver version is unknown (i.e. newer than this code)
// assume the driver supports this device
max_dev_version = dev_version;
}
if (dev_version > max_dev_version) {
major = max_dev_version.first;
minor = max_dev_version.second;
// if we are clamping major/minor, sass is not compatible
compile_to_sass = false;
} else {
major = dev_version.first;
minor = dev_version.second;
compile_to_sass = true;
}
#endif
}
// Compiles the specified kernel and stores the metadata required to run it
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
FusedKernelCUDA::FusedKernelCUDA(
at::DeviceIndex device,
std::string name,
std::string code,
std::vector<TensorDesc> input_desc,
std::vector<TensorDesc> output_desc,
std::vector<PartitionDesc> chunk_desc,
std::vector<PartitionDesc> concat_desc,
bool has_random)
: FusedKernel(
std::move(name),
std::move(code),
std::move(input_desc),
std::move(output_desc),
std::move(chunk_desc),
std::move(concat_desc),
has_random),
device_(device) {
// Initializes driver's API context (if necessary)
executor_utils::initializeCudaContext();
// Note: hacked at::DeviceGuard since at::DeviceGuard was failing to work
// properly in some scenarios
const auto prior_device = at::cuda::current_device();
at::cuda::set_device(device_);
// Acquires device and NVRTC properties (for compile arch and occupancy
// calculations)
prop_ = at::cuda::getCurrentDeviceProperties();
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int major, minor;
bool compile_to_sass = false;
codegenOutputQuery(prop_, major, minor, compile_to_sass);
// Creates the NVRTC program
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
nvrtcProgram program;
AT_CUDA_NVRTC_CHECK(nvrtc().nvrtcCreateProgram(
&program, code_.c_str(), nullptr, 0, nullptr, nullptr));
#if defined(USE_ROCM)
std::vector<const char*> args = {"--std=c++14"};
#if ROCM_VERSION >= 40200
args.push_back("-hip-pch");
#endif
#else
const std::string compute = std::string("--gpu-architecture=") +
#if defined(CUDA_VERSION) && CUDA_VERSION >= 11010
// CUDA 11.1 allows going directly to SASS (sm_) instead of PTX (compute_)
// which gives better backwards compatibility to work on older driver,
// (since older driver doesn't necessrily recognize PTX emitted by new
// toolkit);
// Meanwhile, for forward compatibility (future device with
// `compile_to_sass==false`), since SASS are not necessarily compatible,
// we fallback to PTX instead.
(compile_to_sass ? "sm_" : "compute_") +
#else
"compute_" +
#endif
std::to_string(major) + std::to_string(minor);
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
const std::vector<const char*> args = {
"--std=c++14", compute.c_str(), "-default-device"};
#endif
const auto result =
nvrtc().nvrtcCompileProgram(program, args.size(), args.data());
if (result != NVRTC_SUCCESS) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
size_t logsize;
AT_CUDA_NVRTC_CHECK(nvrtc().nvrtcGetProgramLogSize(program, &logsize));
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
std::vector<char> log(logsize);
AT_CUDA_NVRTC_CHECK(nvrtc().nvrtcGetProgramLog(program, log.data()));
std::stringstream cu;
cu << log.data();
throw std::runtime_error(cu.str());
}
ResourceGuard holdProgram(
[&] { AT_CUDA_NVRTC_CHECK(nvrtc().nvrtcDestroyProgram(&program)); });
AT_CUDA_NVRTC_CHECK(result);
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
size_t ptx_size;
#if defined(CUDA_VERSION) && CUDA_VERSION >= 11010
// compile_to_sass determines whether we are generating SASS or PTX, hence
// the different API.
const auto getSize = compile_to_sass
? at::globalContext().getNVRTC().nvrtcGetCUBINSize
: at::globalContext().getNVRTC().nvrtcGetPTXSize;
const auto getFunc = compile_to_sass
? at::globalContext().getNVRTC().nvrtcGetCUBIN
: at::globalContext().getNVRTC().nvrtcGetPTX;
#else
const auto getSize = at::globalContext().getNVRTC().nvrtcGetPTXSize;
const auto getFunc = at::globalContext().getNVRTC().nvrtcGetPTX;
#endif
AT_CUDA_NVRTC_CHECK(getSize(program, &ptx_size));
ptx_.resize(ptx_size);
AT_CUDA_NVRTC_CHECK(getFunc(program, ptx_.data()));
AT_CUDA_DRIVER_CHECK(nvrtc().cuModuleLoadData(&module_, ptx_.data()));
AT_CUDA_DRIVER_CHECK(
nvrtc().cuModuleGetFunction(&function_, module_, name_.c_str()));
// Computes max blocks
#if defined(USE_ROCM) && ROCM_VERSION < 30500
// HIP function signature is not compatible yet
uint32_t max_blocks;
AT_CUDA_DRIVER_CHECK(nvrtc().hipOccupancyMaxActiveBlocksPerMultiprocessor(
&max_blocks, function_, 128, 0));
maxBlocks_ = max_blocks;
#else
AT_CUDA_DRIVER_CHECK(nvrtc().cuOccupancyMaxActiveBlocksPerMultiprocessor(
&maxBlocks_, function_, 128, 0));
#endif
maxBlocks_ *= prop_->multiProcessorCount;
// Resets device (end of hacked at::DeviceGuard)
at::cuda::set_device(prior_device);
}
static int ceilDiv(const int a, const int b) {
return (a + b - 1) / b;
}
void FusedKernelCUDA::launch_raw(
const uint32_t numel,
std::vector<void*>& arguments) const {
// NOLINTNEXTLINE(bugprone-unused-raii)
at::cuda::CUDAGuard{device_};
// Hacked at::DeviceGuard (see note above)
const auto prior_device = at::cuda::current_device();
at::cuda::set_device(device_);
const auto nBlocks = std::min(maxBlocks_, ceilDiv(numel, kBlockSize));
// Adds random state to arguments if necessary
// Note: philox_engine_inputs defined here so its lifetime extends to the
// launch
std::pair<uint64_t, uint64_t> philox_engine_inputs;
if (has_random_) {
const auto rand_offset =
4 * (std::ceil(numel / (4.0 * kBlockSize * nBlocks)) + 1);
auto gen = at::cuda::detail::getDefaultCUDAGenerator();
{
// See Note [Acquire lock when using random generators]
std::lock_guard<std::mutex> lock(gen.mutex());
philox_engine_inputs =
at::check_generator<at::CUDAGeneratorImpl>(gen)->philox_engine_inputs(
rand_offset);
}
arguments.push_back(&philox_engine_inputs.first);
arguments.push_back(&philox_engine_inputs.second);
}
// Launches kernel on current stream (device was set by executor)
auto stream = at::cuda::getCurrentCUDAStream();
AT_CUDA_DRIVER_CHECK(nvrtc().cuLaunchKernel(
function_,
nBlocks,
1,
1,
kBlockSize,
1,
1,
0,
stream,
arguments.data(),
nullptr));
// Resets device (see at::DeviceGuard notes above)
at::cuda::set_device(prior_device);
}
FusedKernelCUDA::~FusedKernelCUDA() {
nvrtc().cuModuleUnload(module_);
}
static std::shared_ptr<FusedKernel> createFusionKernel(
int16_t device,
std::string name,
std::string code,
std::vector<TensorDesc> input_desc,
std::vector<TensorDesc> output_desc,
std::vector<PartitionDesc> chunk_desc,
std::vector<PartitionDesc> concat_desc,
bool has_random) {
return std::make_shared<FusedKernelCUDA>(
static_cast<at::DeviceIndex>(device),
std::move(name),
std::move(code),
std::move(input_desc),
std::move(output_desc),
std::move(chunk_desc),
std::move(concat_desc),
has_random);
}
RegisterFusionBackend reg(DeviceType::CUDA, createFusionKernel);
} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch
|