File: resource_strings.h

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (410 lines) | stat: -rw-r--r-- 10,777 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
#pragma once

#include <ATen/code_template.h>
#include <torch/csrc/Export.h>

namespace torch {
namespace jit {
namespace fuser {
namespace cuda {

/*with type_as not checking type of its input, a fusion group can have non-fp32
tensor as input. Correct code for this case is generated, however, nvrtc does
not know how to handle int*_t integer types, so typedefs help it handle those
cases*/

#if defined(USE_ROCM)
static auto type_declarations_template = at::jit::CodeTemplate(R"(
${RuntimeHeader}
${HalfHeader}
${BFloat16Header}
${RandHeader}

#define NAN __int_as_float(0x7fffffff)
#define POS_INFINITY __int_as_float(0x7f800000)
#define NEG_INFINITY __int_as_float(0xff800000)

typedef ${IndexType} IndexType;
template<typename T, size_t N>
struct TensorInfo {
  T* data;
  IndexType sizes[N];
  IndexType strides[N];
};
template<typename T>
struct TensorInfo<T, 0> {
  T * data;
};
)");
#else
static auto type_declarations_template = at::jit::CodeTemplate(R"(
typedef unsigned char uint8_t;
typedef signed char int8_t;
typedef short int  int16_t;
typedef long long int int64_t;
typedef unsigned long long int uint64_t;
${HalfHeader}
${BFloat16Header}
${RandHeader}

#define NAN __int_as_float(0x7fffffff)
#define POS_INFINITY __int_as_float(0x7f800000)
#define NEG_INFINITY __int_as_float(0xff800000)

typedef ${IndexType} IndexType;
template<typename T, size_t N>
struct TensorInfo {
  T* data;
  IndexType sizes[N];
  IndexType strides[N];
};
template<typename T>
struct TensorInfo<T, 0> {
  T * data;
};
)");
#endif

// We rewrite the code for philox RNG from curand as nvrtc couldn't resolve the
// curand header correctly.
constexpr auto rand_support_literal = R"(

  class Philox {
  public:
    __device__ inline Philox(unsigned long long seed,
                             unsigned long long subsequence,
                             unsigned long long offset) {
      key.x = (unsigned int)seed;
      key.y = (unsigned int)(seed >> 32);
      counter = make_uint4(0, 0, 0, 0);
      counter.z = (unsigned int)(subsequence);
      counter.w = (unsigned int)(subsequence >> 32);
      STATE = 0;
      incr_n(offset / 4);
    }

    __device__ inline unsigned long operator()() {
      if(STATE == 0) {
        uint4 counter_ = counter;
        uint2 key_ = key;
        for(int i = 0; i < 9; i++) {
          counter_ = single_round(counter_, key_);
          key_.x += (kPhilox10A); key_.y += (kPhilox10B);
        }
        output = single_round(counter_, key_);
        incr();
      }
      unsigned long ret;
      switch(STATE) {
        case 0: ret = output.x; break;
        case 1: ret = output.y; break;
        case 2: ret = output.z; break;
        case 3: ret = output.w; break;
      }
      STATE = (STATE + 1) % 4;
      return ret;
    }

  private:
    uint4 counter;
    uint4 output;
    uint2 key;
    unsigned int STATE;
    __device__ inline void incr_n(unsigned long long n) {
      unsigned int nlo = (unsigned int)(n);
      unsigned int nhi = (unsigned int)(n >> 32);
      counter.x += nlo;
      if (counter.x < nlo)
        nhi++;
      counter.y += nhi;
      if (nhi <= counter.y)
        return;
      if (++counter.z)
        return;
      ++counter.w;
    }
    __device__ inline void incr() {
      if (++counter.x)
        return;
      if (++counter.y)
        return;
      if (++counter.z)
        return;
      ++counter.w;
    }
    __device__ unsigned int mulhilo32(unsigned int a, unsigned int b,
                                      unsigned int *result_high) {
      *result_high = __umulhi(a, b);
      return a*b;
    }

    __device__ inline uint4 single_round(uint4 ctr, uint2 key) {
      unsigned int hi0;
      unsigned int hi1;
      unsigned int lo0 = mulhilo32(kPhiloxSA, ctr.x, &hi0);
      unsigned int lo1 = mulhilo32(kPhiloxSB, ctr.z, &hi1);

      uint4 ret = {hi1 ^ ctr.y ^ key.x, lo1, hi0 ^ ctr.w ^ key.y, lo0};
      return ret;
    }

    static const unsigned long kPhilox10A = 0x9E3779B9;
    static const unsigned long kPhilox10B = 0xBB67AE85;
    static const unsigned long kPhiloxSA = 0xD2511F53;
    static const unsigned long kPhiloxSB = 0xCD9E8D57;
  };

  // Inverse of 2^32.
  #define M_RAN_INVM32 2.3283064e-10f
  __device__  __inline__ float uniform(unsigned int x) {
    return x * M_RAN_INVM32;
  }
)";

constexpr auto rand_param =
    ",unsigned long long seed, unsigned long long offset";

constexpr auto rand_init = R"(
  int idx = blockIdx.x*blockDim.x + threadIdx.x;
  Philox rnd(seed, idx, offset);
)";

static auto cuda_compilation_unit_template = at::jit::CodeTemplate(R"(
${type_declarations}

extern "C" __global__
void ${kernelName}(IndexType totalElements, ${formals} ${RandParam}) {
  ${RandInit}
  // check whether do vectorized load/store and allocate buffer
  bool flag_vec4 = true;
  ${tensorChecks}
  if (flag_vec4) {
    for (IndexType linearIndex = 4 * (blockIdx.x * blockDim.x + threadIdx.x);
         linearIndex < totalElements;
         linearIndex += 4 * gridDim.x * blockDim.x) {
      // Convert `linearIndex` into an offset of tensor as it is:
      ${tensorOffsets}
      // load 4 at a time
      ${kernelLoad}
      #pragma unroll 4
      for (int i=0; i<4; i++) {
        // calculate the results
        ${kernelBody_vec4}
      }
      // store 4 at a time
      ${kernelStore}
    }
  } else {
    for (IndexType linearIndex = blockIdx.x * blockDim.x + threadIdx.x;
         linearIndex < totalElements;
         linearIndex += gridDim.x * blockDim.x) {
      // Convert `linearIndex` into an offset of tensor:
      ${tensorOffsets}
      // calculate the results
      ${kernelBody}
    }
  }
}
)");

// This snippet enables half support in the jit. Following the pattern for
// reductions, fp16 input data is immediately upconverted to float
// with __half2float(). All mathematical operations are done on float
// values, and if needed the intermediate float representation is
// converted to half with __float2half() when writing to a half tensor.
#if defined(USE_ROCM)
constexpr auto half_support_literal =
    R"(
typedef __half half;
)";
#else
constexpr auto half_support_literal =
    R"(
#define __HALF_TO_US(var) *(reinterpret_cast<unsigned short *>(&(var)))
#define __HALF_TO_CUS(var) *(reinterpret_cast<const unsigned short *>(&(var)))
#if defined(__cplusplus)
  struct __align__(2) __half {
    __host__ __device__ __half() { }

  protected:
    unsigned short __x;
  };

  /* All intrinsic functions are only available to nvcc compilers */
  #if defined(__CUDACC__)
    /* Definitions of intrinsics */
    __device__ __half __float2half(const float f) {
      __half val;
      asm("{  cvt.rn.f16.f32 %0, %1;}\n" : "=h"(__HALF_TO_US(val)) : "f"(f));
      return val;
    }

    __device__ float __half2float(const __half h) {
      float val;
      asm("{  cvt.f32.f16 %0, %1;}\n" : "=f"(val) : "h"(__HALF_TO_CUS(h)));
      return val;
    }
)"
    // MSVC's preprocessor (but not the standard compiler) has a bug
    // where it incorrectly tokenizes raw string literals, ending when it sees a
    // " this causes the #endif in this string literal to be treated as a
    // preprocessor token which, in turn, cause sccache on windows CI to fail.
    // See https://godbolt.org/z/eVTIJq as an example.
    // This workaround uses string-pasting to separate the " and the #endif into
    // different strings
    R"(
  #endif /* defined(__CUDACC__) */
#endif /* defined(__cplusplus) */
#undef __HALF_TO_US
#undef __HALF_TO_CUS

typedef __half half;
)";
#endif

#if defined(USE_ROCM)
constexpr auto bfloat16_support_literal =
    R"(
#ifndef __align__
#define __align__(x) __attribute__((aligned(x)))
#endif

typedef struct __align__(2) {
  unsigned short x;
}
__nv_bfloat16_raw;

#if defined(__cplusplus)
struct __align__(2) __nv_bfloat16 {
  __host__ __device__ __nv_bfloat16() {}

  __host__ __device__ __nv_bfloat16& operator=(const __nv_bfloat16_raw& hr) {
    __x = hr.x;
    return *this;
  }

  unsigned short __x;
};

__device__ unsigned short __internal_float2bfloat16(
    const float f,
    unsigned int& sign,
    unsigned int& remainder) {
  unsigned int x;

  x = __float_as_uint(f);

  if ((x & 0x7fffffffU) > 0x7f800000U) {
    sign = 0U;
    remainder = 0U;
    return static_cast<unsigned short>(0x7fffU);
  }
  sign = x >> 31;
  remainder = x << 16;
  return static_cast<unsigned short>(x >> 16);
}

/* Definitions of intrinsics */
__device__ __nv_bfloat16 __float2bfloat16(const float a) {
  __nv_bfloat16 val;
  __nv_bfloat16_raw r;
  unsigned int sign;
  unsigned int remainder;
  r.x = __internal_float2bfloat16(a, sign, remainder);
  if ((remainder > 0x80000000U) ||
      ((remainder == 0x80000000U) && ((r.x & 0x1U) != 0U))) {
    r.x++;
  }
  val = r;
  return val;
}

__device__ float __bfloat162float(const __nv_bfloat16 a) {
  union
  {
      uint32_t int32;
      float    fp32;
  } u = {uint32_t(a.__x) << 16};
  return u.fp32;
}
#endif /* defined(__cplusplus) */
)";
#else
constexpr auto bfloat16_support_literal =
    R"(
#define __BFLOAT16_TO_US(var) *(reinterpret_cast<unsigned short*>(&(var)))
#define __BFLOAT16_TO_CUS(var) \
  *(reinterpret_cast<const unsigned short*>(&(var)))

typedef struct __align__(2) {
  unsigned short x;
}
__nv_bfloat16_raw;

#if defined(__cplusplus)
struct __align__(2) __nv_bfloat16 {
  __host__ __device__ __nv_bfloat16() {}

  __host__ __device__ __nv_bfloat16& operator=(const __nv_bfloat16_raw& hr) {
    __x = hr.x;
    return *this;
  }

 protected:
  unsigned short __x;
};

#if defined(__CUDACC__)
__device__ unsigned short __internal_float2bfloat16(
    const float f,
    unsigned int& sign,
    unsigned int& remainder) {
  unsigned int x;

  x = __float_as_uint(f);

  if ((x & 0x7fffffffU) > 0x7f800000U) {
    sign = 0U;
    remainder = 0U;
    return static_cast<unsigned short>(0x7fffU);
  }
  sign = x >> 31;
  remainder = x << 16;
  return static_cast<unsigned short>(x >> 16);
}

/* Definitions of intrinsics */
__device__ __nv_bfloat16 __float2bfloat16(const float a) {
  __nv_bfloat16 val;
#if __CUDA_ARCH__ >= 800
  asm("{  cvt.rn.bf16.f32 %0, %1;}\n" : "=h"(__BFLOAT16_TO_US(val)) : "f"(a));
#else
  __nv_bfloat16_raw r;
  unsigned int sign;
  unsigned int remainder;
  r.x = __internal_float2bfloat16(a, sign, remainder);
  if ((remainder > 0x80000000U) ||
      ((remainder == 0x80000000U) && ((r.x & 0x1U) != 0U))) {
    r.x++;
  }
  val = r;
#endif
  return val;
}

__device__ float __bfloat162float(const __nv_bfloat16 a) {
  float val;
  asm("{ mov.b32 %0, {0,%1};}\n" : "=f"(val) : "h"(__BFLOAT16_TO_CUS(a)));
  return val;
}
#endif /* defined(__CUDACC__) */
#endif /* defined(__cplusplus) */
#undef __BFLOAT16_TO_US
#undef __BFLOAT16_TO_CUS
)";
#endif

} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch