1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
|
#include <torch/csrc/jit/codegen/onednn/guard_shape.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/tensorexpr_fuser.h>
#include <torch/csrc/jit/passes/utils/subgraph_utils.h>
#include <torch/csrc/jit/runtime/graph_executor.h>
namespace torch {
namespace jit {
namespace fuser {
namespace onednn {
//! [ Note -- prepareFusionGroupAndGuardOutputs implementation ]
//! shamelessly copying code from NNC (tensorexpr_fuser) with very little
//! modification, original code at:
//! `torch/csrc/jit/passes/tensorexpr_fuser.cpp:prepareFusionGroupAndGuardOutputs`
//!
//! We have the assumption that LLGA does not have operators
//! depending on the content of the tensor.
void prepareFusionGroupAndGuardOutputs(Block* block) {
std::vector<Node*> fusion_groups;
for (Node* n : block->nodes()) {
for (Block* b : n->blocks()) {
prepareFusionGroupAndGuardOutputs(b);
}
if (n->kind() == prim::oneDNNFusionGroup) {
fusion_groups.push_back(n);
}
}
for (Node* fusion_group : fusion_groups) {
// TODO: add further optimization pass to removeOutputsUsedOnlyInSize,
// refer to
// `torch/csrc/jit/passes/tensorexpr_fuser.cpp:removeOutputsUsedOnlyInSize`
// removeOutputsUsedOnlyInSize(fusion_group);
insertTypeGuard(
fusion_group,
[](const TensorTypePtr& t) { return t; },
prim::oneDNNFusionGuard);
}
}
} // namespace onednn
} // namespace fuser
} // namespace jit
} // namespace torch
|