1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
|
#include <torch/csrc/jit/codegen/onednn/graph_helper.h>
#include <torch/csrc/jit/codegen/onednn/kernel.h>
#include <ATen/core/functional.h>
#include <torch/csrc/jit/jit_log.h>
namespace torch {
namespace jit {
namespace fuser {
namespace onednn {
using namespace dnnl::graph;
using data_type = dnnl::graph::logical_tensor::data_type;
LlgaKernel::LlgaKernel(const Node* fusionNode)
: fusionNode_(fusionNode),
graph_(fusionNode->g(attr::Subgraph)),
nGraphInputs_(graph_->inputs().size()),
nOutputs_(graph_->outputs().size()),
debugName_(genDebugName()) {
// TODO: This is a workaround to recreate the partitions here.
// The ideal way is to use the partition serialization API (not available from
// LLGA now) to carry a serialized string representation from graph rewrite
// and deserialize it here.
auto llgaGraphHelper = LlgaGraphHelper(graph_);
auto partitions = llgaGraphHelper.getPartitions();
tensorIdToValue_ = llgaGraphHelper.getTensorIdToValue();
TORCH_CHECK(
partitions.size() == 1,
"LLGA subgraph should contain only one partition");
partition_ = partitions[0];
nPartitionInputs_ = partition_.get_in_ports().size();
#ifdef GRAPH_DEBUG_ENABLED
GRAPH_DEBUG("Initialized ", debugName(), "\n", graph_->toString());
#endif
}
bool LlgaKernel::useOpaqueLayout(size_t offset) const {
return LlgaNodeWrapper(fusionNode_).useOpaqueLayout(offset);
}
void LlgaKernel::initializeConstantInputs() {
for (auto& lt : partition_.get_in_ports()) {
auto inputId = lt.get_id();
if (initializedInputIds_.find(inputId) == initializedInputIds_.end()) {
TORCH_CHECK(
tensorIdToValue_.count(inputId) > 0,
"inputs with inputId ",
inputId,
" is missing");
auto* value = tensorIdToValue_[inputId];
TORCH_CHECK(
value->node()->kind() == prim::Constant &&
value->type()->cast<TensorType>(),
"inputs with inputId ",
inputId,
" should be a Constant tensor");
constantValues_.emplace_back(value);
auto const_tensor = toIValue(value)->toTensor();
constantInputs_.emplace_back(const_tensor);
}
}
}
std::map<size_t, int64_t> LlgaKernel::initializeTensorIdToOccurence() const {
std::map<size_t, int64_t> tensorIdToOccurence;
for (auto& lt : partition_.get_in_ports()) {
auto inputId = lt.get_id();
std::map<size_t, int64_t>::iterator it(tensorIdToOccurence.find(inputId));
if (it != tensorIdToOccurence.end()) {
it->second++;
} else {
tensorIdToOccurence[inputId] = 1;
}
}
return tensorIdToOccurence;
}
ArgSpecs LlgaKernel::initializeInputSpecs(const TensorArgs& inputs) {
ArgSpecs inputSpecs;
inputSpecs.reserve(nPartitionInputs_);
GRAPH_DEBUG("Initializing graph input logical tensors");
std::map<size_t, int64_t> tensorIdToOccurence =
initializeTensorIdToOccurence();
for (size_t i = 0; i < nGraphInputs_; i++) {
auto spec = ArgSpec(graph_->inputs()[i]).supplementTensorInfo(inputs[i]);
initializedInputIds_.insert(spec.tid());
int64_t occurence = tensorIdToOccurence[spec.tid()];
inputSpecs.insert(inputSpecs.end(), occurence, spec);
runArgsIdx_.insert(runArgsIdx_.end(), occurence, i);
}
GRAPH_DEBUG("Initializing constant input tensors");
initializeConstantInputs();
TORCH_CHECK(
inputSpecs.size() + constantValues_.size() == nPartitionInputs_,
"Partition inputs are missing");
GRAPH_DEBUG(
"Concatenating constant input logical tensors to graph input "
"logical tensors");
for (Value* constant_value : constantValues_) {
ArgSpec constantInputSpec(constant_value);
inputSpecs.emplace_back(constantInputSpec);
constantLogicalTensors_.emplace_back(constantInputSpec.logical_tensor());
}
return inputSpecs;
}
ArgSpecs LlgaKernel::initializeOutputSpecs() const {
ArgSpecs outputSpecs;
outputSpecs.reserve(nOutputs_);
for (size_t i = 0; i < nOutputs_; i++) {
auto spec = ArgSpec(graph_->outputs()[i]);
if (useOpaqueLayout(i)) {
spec = spec.any();
}
outputSpecs.emplace_back(spec);
}
return outputSpecs;
}
std::tuple<RunArgs, RunArgs> LlgaKernel::prepareRunArgs(
const TensorArgs& inputs,
TensorArgs& outputs) const {
RunArgs runInputs, runOutputs;
auto numInputs = runArgsIdx_.size();
for (size_t i = 0; i < numInputs; i++) {
auto spec = inputSpecs_[i];
auto input = inputs[runArgsIdx_[i]];
runInputs.push_back(
{spec.logical_tensor(), Engine::getEngine(), input.data_ptr()});
}
auto numConstantInputs = constantInputs_.size();
for (size_t i = 0; i < numConstantInputs; i++) {
// constantInputSpecs are placed after graphInputSpecs
auto constantInputSpecIdx = nGraphInputs_ + i;
auto constantInputSpec = inputSpecs_[constantInputSpecIdx];
runInputs.push_back(
{constantLogicalTensors_[i],
Engine::getEngine(),
constantInputs_[i].data_ptr()});
}
for (size_t i = 0; i < nOutputs_; i++) {
auto spec = outputSpecs_[i];
auto opt = c10::TensorOptions(spec.aten_scalar_type()).device(device_);
if (spec.reuses_input_tensor()) {
#ifdef GRAPH_DEBUG_ENABLED
GRAPH_DEBUG("oneDNN Graph would perform inplace computation");
#endif
auto inputTensor = inputs[spec.get_input_tensor_index()];
auto dataType = spec.dtype();
if (C10_UNLIKELY(!useOpaqueLayout(i) && inputTensor.is_mkldnn())) {
// If the input tensor was between two partitions, it would've been
// wrapped with LlgaTensorImpl. But if it's being reused as the output
// tensor which is not between two partitions, then we'd have to re-wrap
// it with TensorImpl, as it'd be fed into a PyTorch op.
#ifdef GRAPH_DEBUG_ENABLED
GRAPH_DEBUG("Rewrap tensor");
#endif
auto llgaImpl =
static_cast<LlgaTensorImpl*>(inputTensor.unsafeGetTensorImpl());
switch (dataType) {
case data_type::f32:
case data_type::bf16:
inputTensor = LlgaTensorImpl::llga_to_aten_tensor(llgaImpl);
break;
case data_type::s32:
default:
TORCH_CHECK(
false, "Invalid data type ", static_cast<size_t>(dataType));
}
}
outputs.push_back(inputTensor);
runOutputs.push_back(
{spec.logical_tensor(), Engine::getEngine(), inputTensor.data_ptr()});
} else if (useOpaqueLayout(i)) {
// Wrap tensors between partitions with LlgaTensorImpl wrapper, so that we
// can bypass guard-check, as strides would be different than those
// expected.
#ifdef GRAPH_DEBUG_ENABLED
GRAPH_DEBUG("Between two oneDNN Graph partitions");
#endif
auto tensor = empty_llga(spec, opt);
outputs.push_back(tensor);
runOutputs.push_back(llga_from_aten_tensor(tensor));
} else {
#ifdef GRAPH_DEBUG_ENABLED
GRAPH_DEBUG("Neither opaque to PyTorch nor inplace-computation");
#endif
auto tensor = at::empty_strided(spec.sizes(), spec.strides(), opt);
outputs.push_back(tensor);
runOutputs.push_back(
{spec.logical_tensor(), Engine::getEngine(), tensor.data_ptr()});
}
}
return std::make_tuple(runInputs, runOutputs);
}
compiled_partition LlgaKernel::compile(const partition& partition) {
auto inputs = fmap(inputSpecs_, toLogicalTensor);
auto outputs = fmap(outputSpecs_, toLogicalTensor);
auto compilation = partition.compile(inputs, outputs, Engine::getEngine());
// Since layouts of opaque outputs would be known after compilation,
// we need to query them out from compilation and update outputSpecs
for (size_t i = 0; i < nOutputs_; i++) {
auto tid = outputSpecs_[i].tid();
outputSpecs_[i] = compilation.query_logical_tensor(tid);
}
// Build static mapping from output id to input offset
// in accordance with available inplace options
for (auto&& option : compilation.get_inplace_ports()) {
size_t inputId = option.first;
size_t outputId = option.second;
auto inputSpecIter =
std::find_if(inputSpecs_.begin(), inputSpecs_.end(), [&](auto& spec) {
return spec.tid() == inputId;
});
TORCH_CHECK(inputSpecIter != inputSpecs_.end(), "In-place input not found");
auto inputOffset = inputSpecIter - inputSpecs_.begin();
auto outputSpecIter =
std::find_if(outputSpecs_.begin(), outputSpecs_.end(), [&](auto& spec) {
return spec.tid() == outputId;
});
auto outputOffset = outputSpecIter - outputSpecs_.begin();
outputSpecs_[outputOffset].set_compute_inplace();
outputSpecs_[outputOffset].set_input_tensor_index(inputOffset);
}
return compilation;
}
void LlgaKernel::run(Stack& stack) {
#ifdef GRAPH_DEBUG_ENABLED
GRAPH_DEBUG("In ", debugName(), "\n");
#endif
// Grab input values from stack
auto stackInputs = last(stack, nGraphInputs_);
auto inputs = fmap(stackInputs, [&](const IValue& v) {
TORCH_CHECK(
v.isTensor(), "Stack values for LLGA partition must be Tensor type");
return v.toTensor();
});
// Even in case of concurrent threads, the kernel would be initialized once.
// TODO: Try not using an atomic lock
c10::call_once(
initialized_flag,
[&](const TensorArgs& inputs) {
GRAPH_DEBUG("Initializing input logical tensors");
inputSpecs_ = initializeInputSpecs(inputs);
GRAPH_DEBUG("Initializing output logical tensors");
outputSpecs_ = initializeOutputSpecs();
GRAPH_DEBUG("Compiling partition");
compilation_ = compile(partition_);
is_initialized_ = true;
},
inputs);
#ifdef GRAPH_DEBUG_ENABLED
GRAPH_DEBUG("Preparing runtime tensors");
#endif
TensorArgs outputs;
RunArgs runInputs, runOutputs;
std::tie(runInputs, runOutputs) = prepareRunArgs(inputs, outputs);
#ifdef GRAPH_DEBUG_ENABLED
GRAPH_DEBUG("Executing partition");
#endif
compilation_.execute(Stream::getStream(), runInputs, runOutputs);
#ifdef GRAPH_DEBUG_ENABLED
GRAPH_DEBUG("Partition executed");
#endif
// Update the stack.
drop(stack, nGraphInputs_);
for (auto& o : outputs)
push_one(stack, std::move(o));
#ifdef GRAPH_DEBUG_ENABLED
GRAPH_DEBUG("Stack updated");
#endif
}
} // namespace onednn
} // namespace fuser
} // namespace jit
} // namespace torch
|