File: prepare_binary.cpp

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (106 lines) | stat: -rw-r--r-- 3,338 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
#include <torch/csrc/jit/codegen/onednn/prepare_binary.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/passes/shape_analysis.h>

namespace torch {
namespace jit {
namespace fuser {
namespace onednn {

bool compareConstValue(Value* v, double d) {
  auto ival = toIValue(v);
  return ival.has_value() &&
      ((ival->isInt() && static_cast<int>(ival->toInt()) == d) ||
       (ival->isDouble() && ival->toDouble() == d));
}

void mayConvertScalarInputToTensor(Node* node) {
  // We do not handle binary ops with two scalar inputs,
  // and we assume scalar is always at the second place.
  if (node->input(0)->type()->isSubtypeOf(TensorType::get()) &&
      (node->input(1)->type()->isSubtypeOf(FloatType::get()) ||
       node->input(1)->type()->isSubtypeOf(IntType::get()))) {
    auto scalar = node->input(1);
    WithInsertPoint guard(node);
    auto g = node->owningGraph();
    // 42 : Scalar  -->  tensor(42.0) : Float([])
    auto t = g->insert(
        aten::as_tensor, {scalar}, {{"dtype", at::ScalarType::Float}});
    // add dim & stride info to IR
    c10::optional<size_t> t_dim = 1;
    auto target_type = TensorTypePtr(
        TensorType::create(at::ScalarType::Float, at::kCPU, t_dim, false));
    target_type = target_type->withSizes({1});
    t->setType(target_type);

    // tensor(42.0) : Float([])  -->  tensor([42.0]) : Float([1])
    auto unsqueezed = g->insert(aten::unsqueeze, {t, 0});
    unsqueezed->setType(target_type);
    node->replaceInput(1, unsqueezed);
  }
}

static void ConvertScalarToTensor(Block* block) {
  for (auto node : block->nodes()) {
    for (auto sub : node->blocks()) {
      ConvertScalarToTensor(sub);
    }

    if (node->kind() == aten::add || node->kind() == aten::mul) {
      mayConvertScalarInputToTensor(node);
    }
  }
}

void mayDecomposeAdd(Node* node) {
  if (toIValue(node->namedInput("alpha")).has_value()) {
    auto alphaEqualsOne = compareConstValue(node->namedInput("alpha"), 1.0);
    if (!alphaEqualsOne) {
      WithInsertPoint guard(node);
      auto g = node->owningGraph();
      auto mul = g->insert(
          aten::mul, {node->namedInput("other"), node->namedInput("alpha")});
      node->replaceInput(1, mul);
      auto one = g->insertConstant(1.0);
      node->replaceInput(2, one);
    }
  }
}

static void DecomposeFusedAdd(Block* block) {
  for (auto node : block->nodes()) {
    for (auto sub : node->blocks()) {
      DecomposeFusedAdd(sub);
    }

    if (node->kind() == aten::add) {
      mayDecomposeAdd(node);
    }
  }
}

static void EliminateIdentityMulAdd(Block* block) {
  for (auto node : block->nodes()) {
    for (auto sub : node->blocks()) {
      EliminateIdentityMulAdd(sub);
    }

    if ((node->kind() == aten::add && compareConstValue(node->input(1), 0.0)) ||
        (node->kind() == aten::mul && compareConstValue(node->input(1), 1.0))) {
      node->output()->replaceAllUsesWith(node->namedInput("self"));
    }
  }
}

void PrepareBinaryForLLGA(const std::shared_ptr<Graph>& graph) {
  DecomposeFusedAdd(graph->block());
  EliminateIdentityMulAdd(graph->block());
  EliminateDeadCode(graph);
  // ConvertScalarToTensor must be placed after EliminateIdentityMulAdd
  ConvertScalarToTensor(graph->block());
}

} // namespace onednn
} // namespace fuser
} // namespace jit
} // namespace torch