1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
|
#include <torch/csrc/jit/frontend/exit_transforms.h>
#include <ATen/core/jit_type.h>
#include <c10/util/irange.h>
#include <torch/csrc/jit/frontend/error_report.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/ir/ir_views.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/runtime/graph_iterator.h>
namespace torch {
namespace jit {
// WILL states that a node/block must hit the exit, MIGHT that it may happen,
// WONT that it will not happen. THROWS states that a node/block always throws,
// and allows us to create better graphs by not conditionalizing execution
// when it is not necessary. It is an optimization; replacing it with WONT
// would preserve graph semantics.
enum class ExitStatus { WILL, MIGHT, WONT, THROWS };
enum class Transform { Returns, LoopContinuations };
// hasExited() indicates whether or not an exit has been hit.
// The ExitTransform pass maintains a false boolean false_val_ && a true boolean
// true_val_, and an uninitialized boolean throws_val_.
// if hasExited() == true_val_ then we have exited, if hasExited() == false_val_
// we have not, hasExited() == throws_val_ we have hit a block that throws.
// Otherwise, we might have exited.
// exitValues() are the values that we are propagating to a destination block.
// this is used for block outputs of loops and outputs of functions & closures
struct ExitPair : public std::pair<Value*, std::vector<Value*>> {
using pair::pair;
ExitPair(Value* exit_v, at::ArrayRef<Value*> exit_val_ref) {
std::vector<Value*> exit_vals;
for (Value* v : exit_val_ref) {
exit_vals.push_back(v);
}
AT_ASSERT(exit_v->type() == BoolType::get());
this->first = exit_v;
this->second = std::move(exit_vals);
}
Value* hasExited() const {
return this->first;
}
std::vector<Value*> exitValues() const {
return this->second;
}
};
/**
* This pass currently transforms the Graph so that all exit nodes targeting
* a block location are removed from the graph and unified.
* The exit node for breaks/continues is LoopContinuation, and the exit for
* Graphs & Closures is ReturnStmt.
*
* Once we hit an Exit Node, we do not execute any further instructions
* until the exit target has been reached.
*
* For blocks and control flow nodes that have an exit statement that may
* have been hit, we conditionalize all execution on a boolean value that
* indicates whether we have hit the exit, hasExited().
*
* The pass keeps tracks of blocks that always throw, so that we can construct
* simpler graphs. For example, if in one block of an if statement we return
* and in the other we throw, we can treat the node as always returning instead
* of conditionalizing execution in the remainder of the block.
*/
struct ExitTransformer {
ExitTransformer(std::shared_ptr<Graph> graph) : graph_(std::move(graph)) {
WithInsertPoint guard(graph_->block()->nodes().front());
true_val_ = graph_->insertConstant(true);
false_val_ = graph_->insertConstant(false);
// this value will never be used, since we will always throw before it is
// accessed
throws_val_ = getUnitValue(BoolType::get());
};
void transformReturnStmts() {
current_exit_kind_ = prim::ReturnStmt;
transformExits(graph_->block());
}
void transformLoopContinuations() {
current_exit_kind_ = prim::LoopContinuation;
transformExits(graph_->block());
}
private:
ExitPair constructThrowsExitPair() {
return ExitPair(throws_val_, std::vector<Value*>({}));
}
ExitPair constructWontExitPair() {
return ExitPair(false_val_, std::vector<Value*>({}));
}
ExitPair constructWillExitPair(at::ArrayRef<Value*> exit_val_ref) {
return ExitPair(true_val_, exit_val_ref);
}
ExitStatus getExitStatus(ExitPair& exit_pair) {
Value* exit_v = exit_pair.hasExited();
if (exit_v == true_val_) {
return ExitStatus::WILL;
} else if (exit_v == false_val_) {
return ExitStatus::WONT;
} else if (exit_v == throws_val_) {
return ExitStatus::THROWS;
} else {
return ExitStatus::MIGHT;
}
}
static Symbol owningNodeKind(Block* block) {
if (block->owningNode()) {
return block->owningNode()->kind();
}
return Symbol();
}
static bool isGraphOrClosureBlock(Block* block) {
return block->owningNode() == nullptr ||
owningNodeKind(block) == prim::Closure;
}
static void removeOutputs(Block* b) {
while (b->outputs().size() > 0) {
b->eraseOutput(0);
}
}
static void registerBlockOutputs(Block* b, at::ArrayRef<Value*> outs) {
for (Value* out : outs) {
b->registerOutput(out);
}
}
static void replaceBlockOutputs(Block* b, at::ArrayRef<Value*> outs) {
removeOutputs(b);
registerBlockOutputs(b, outs);
}
static void addIfOutputs(
Node* n,
at::ArrayRef<Value*> true_outs,
at::ArrayRef<Value*> false_outs) {
IfView if_view(n);
registerBlockOutputs(if_view.thenBlock(), true_outs);
registerBlockOutputs(if_view.elseBlock(), false_outs);
for (const auto i : c10::irange(true_outs.size())) {
auto out_type = unifyTypes(
true_outs.at(i)->type(),
false_outs.at(i)->type(),
/*default_to_union=*/true);
n->addOutput()->setType(*out_type);
}
}
// creates a vector of uninitialized values of the same type as the
// values_to_match
std::vector<Value*> matchValuesWithUnitialized(
at::ArrayRef<Value*> values_to_match) {
std::vector<Value*> match_values;
for (Value* val : values_to_match) {
match_values.push_back(getUnitValue(val->type()));
}
return match_values;
}
ExitPair transformLoop(Node* node) {
LoopView loop(node);
Block* body = loop.bodyBlock();
auto exit_pair = transformExits(body);
// if we're not exiting to outside the loop we don't need to do any work.
// since we may not enter the loop return WONT for the THROWS case.
if (getExitStatus(exit_pair) == ExitStatus::WONT ||
getExitStatus(exit_pair) == ExitStatus::THROWS) {
return constructWontExitPair();
}
// if we are, we need to update the loop continue condition so that
// we exit the loop if we've hit an exit
// and we need to propagate hasExited() and exitValues() outside the loop
// example:
// while i < 5:
// i += 1
// if j == 4:
// return 5
// -> becomes
//
// loop_continue = i < 5
// has_exited = false
// ret_val = uninitialized(int)
// while loop_continue:
// i += 1
// if j == 4:
// ret_val = 5
// has_exited = True
// else:
// ret_val = uninitialized(int)
// has_exited = False
// if has_exited:
// loop_continue = False
// else:
// loop_continue = i < 5
// update loop continuation condition so that we exit if we hit an exit
WithInsertPoint insert(body);
auto new_if = graph_->insertNode(graph_->create(prim::If, 0));
new_if->addInput(exit_pair.hasExited());
new_if->addBlock()->registerOutput(false_val_);
new_if->addBlock()->registerOutput(loop.nextCond());
auto new_condition = new_if->addOutput()->setType(BoolType::get());
loop.bodyBlock()->eraseOutput(0);
loop.bodyBlock()->insertOutput(0, new_condition);
// add hasExited() to loop outputs, we didn't exit if we didn't enter the
// loop
node->addInput(false_val_);
body->addInput()->setType(BoolType::get());
body->registerOutput(exit_pair.hasExited());
Value* new_has_exited = node->addOutput()->setType(BoolType::get());
// add exit values
for (Value* exit_value : exit_pair.exitValues()) {
auto typ = exit_value->type();
node->addInput(getUnitValue(typ));
node->addOutput()->setType(typ);
body->addInput()->setType(typ);
body->registerOutput(exit_value);
}
auto exit_vals = node->outputs().slice(
node->outputs().size() - exit_pair.exitValues().size());
return ExitPair(new_has_exited, exit_vals);
}
ExitStatus calcIfExitStatus(ExitStatus then_status, ExitStatus else_status) {
// if one branch throws, we can take the status of the other
if (then_status == ExitStatus::THROWS) {
return else_status;
} else if (else_status == ExitStatus::THROWS) {
return then_status;
}
if (then_status == ExitStatus::WONT && else_status == ExitStatus::WONT) {
return ExitStatus::WONT;
}
if (then_status == ExitStatus::WILL && else_status == ExitStatus::WILL) {
return ExitStatus::WILL;
}
return ExitStatus::MIGHT;
}
// Recursively transforms the if node
ExitPair transformIf(Node* node) {
auto then_block = node->blocks().at(0);
auto else_block = node->blocks().at(1);
auto then_pair = transformExits(then_block);
auto else_pair = transformExits(else_block);
auto then_status = getExitStatus(then_pair);
auto else_status = getExitStatus(else_pair);
auto if_status = calcIfExitStatus(then_status, else_status);
if (if_status == ExitStatus::THROWS) {
return constructThrowsExitPair();
}
if (if_status == ExitStatus::WONT) {
return constructWontExitPair();
}
// The exit values of the block that is not exiting will not get
// used, so we create uninitialized values of the same type as the other
// block.
if (then_status == ExitStatus::WONT || then_status == ExitStatus::THROWS) {
std::vector<Value*> exit_vals =
matchValuesWithUnitialized(else_pair.exitValues());
then_pair = ExitPair(then_pair.hasExited(), exit_vals);
} else if (
else_status == ExitStatus::WONT || else_status == ExitStatus::THROWS) {
std::vector<Value*> exit_vals =
matchValuesWithUnitialized(then_pair.exitValues());
else_pair = ExitPair(else_pair.hasExited(), exit_vals);
}
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
Value* has_exited;
if (if_status == ExitStatus::WILL) {
// Need to maintain the invariant that if hasExited() == true_val_
// then we have exited.
has_exited = true_val_;
} else {
addIfOutputs(node, {then_pair.hasExited()}, {else_pair.hasExited()});
has_exited = node->outputs().at(node->outputs().size() - 1);
}
addIfOutputs(node, then_pair.exitValues(), else_pair.exitValues());
size_t num_exit_vals = then_pair.exitValues().size();
auto exit_vals =
node->outputs().slice(node->outputs().size() - num_exit_vals);
return ExitPair(has_exited, exit_vals);
}
// Recursively transforms the With node.
ExitPair transformWith(Node* node) {
auto body_block = node->blocks().at(0);
auto body_pair = transformExits(body_block);
return body_pair;
}
// Guards the remaining nodes in the block with an if node that takes
// the has exited value as its conditional
ExitPair guardBlockNodes(
Block* block,
const ExitPair& exit_pair,
graph_node_list_iterator& iter) {
auto new_if = graph_->create(prim::If, 0)->insertBefore(*iter);
new_if->addInput(exit_pair.hasExited());
auto exit_block = new_if->addBlock();
auto guard_block = new_if->addBlock();
// Move all remaining nodes into the guard block
while (iter != block->nodes().end()) {
auto node = *iter++;
node->moveBefore(guard_block->return_node());
}
std::vector<Value*> exit_block_vals;
// after an exit, the only values that will get used
// are the hasExited() and exitValues(), so we match the existing
// block outputs with unitialized
exit_block_vals = matchValuesWithUnitialized(block->outputs());
// Set the new if to have the same outputs of the original block,
// then replace the original block outputs with new if's outputs
for (size_t i = 0; i < block->outputs().size(); ++i) {
exit_block->registerOutput(exit_block_vals.at(i));
guard_block->registerOutput(block->outputs().at(i));
new_if->addOutput()->setType(block->outputs().at(i)->type());
}
while (block->outputs().size() > 0) {
block->eraseOutput(0);
}
for (auto out : new_if->outputs()) {
block->registerOutput(out);
}
graph_->create(current_exit_kind_, {exit_pair.exitValues()}, 0)
->insertBefore(exit_block->return_node());
return transformIf(new_if);
}
// these nodes my have uses,
// such as in the case:
// if i == 1:
// break
// j = j + 1
// where the j + 1 value will be a block output, but since they will
// never be used, it is safe to replace them with unitialized value
void destroyNodeAfterExit(Node* n) {
for (auto output : n->outputs()) {
if (output->uses().size() > 0) {
output->replaceAllUsesWith(getUnitValue(output->type()));
}
}
n->destroy();
}
void deleteAfterExitNodes(Block* block, graph_node_list_iterator& iter) {
if (iter == block->nodes().end()) {
return;
}
WithInsertPoint insert(*block->nodes().begin());
// need to destroy in reverse order so nodes have no uses when destroyed
for (auto it = block->nodes().reverse().begin(); it != iter;) {
Node* n = *it++;
if (*it != block->return_node()) {
destroyNodeAfterExit(n);
}
}
destroyNodeAfterExit(*iter);
}
// if we're entering a Loop block & transforming LoopContinuations, or if
// we're entering a Closure/Graph block and we're transforming ReturnStmts,
// then we update target_block_ to be the new block.
// otherwise, target_block_ remains the same.
void updateTargetBlock(Block* block) {
if (owningNodeKind(block) == prim::Loop &&
// NOLINTNEXTLINE(bugprone-branch-clone)
current_exit_kind_ == prim::LoopContinuation) {
target_block_ = block;
} else if (
isGraphOrClosureBlock(block) &&
current_exit_kind_ == prim::ReturnStmt) {
target_block_ = block;
}
}
ExitPair transformExits(Block* block) {
Block* prev_target_block = target_block_;
updateTargetBlock(block);
ExitPair exit_pair = constructWontExitPair();
for (auto it = block->nodes().begin(); it != block->nodes().end();) {
Node* node = *it;
it++;
switch (node->kind()) {
case prim::RaiseException: {
exit_pair = constructThrowsExitPair();
} break;
case prim::ReturnStmt:
case prim::LoopContinuation: {
if (node->kind() == current_exit_kind_) {
exit_pair = constructWillExitPair(node->inputs());
node->destroy();
}
} break;
case prim::If: {
exit_pair = transformIf(node);
} break;
case prim::With: {
exit_pair = transformWith(node);
} break;
case prim::Closure: {
// exits of closure declaration stay local to the closure
transformExits(node->blocks().at(0));
} break;
case prim::Loop: {
exit_pair = transformLoop(node);
} break;
}
// if we have hit a node that might exit, we need to conditionally execute
// all subsequent nodes in the block. if we've hit a node that will exit
// we can remove all subsequent nodes.
ExitStatus status = getExitStatus(exit_pair);
if (status == ExitStatus::WILL || status == ExitStatus::THROWS) {
deleteAfterExitNodes(block, it);
break;
}
if (status == ExitStatus::MIGHT) {
if (it != block->nodes().end()) {
exit_pair = guardBlockNodes(block, exit_pair, it);
}
break;
}
}
// if we are targeting this block, update the output values to the
// exit values. since the exit does not extend outside this block,
// update returned exit to false. then, reset the target_block to whatever
// it was previously
if (target_block_ == block) {
// if we might have exited, use the new exit values if we did exit,
// otherwise use the existing block outputs.
if (getExitStatus(exit_pair) == ExitStatus::MIGHT) {
auto new_if =
graph_->create(prim::If, 0)->insertBefore(block->return_node());
new_if->addBlock();
new_if->addBlock();
new_if->addInput(exit_pair.hasExited());
addIfOutputs(new_if, exit_pair.exitValues(), block->outputs());
replaceBlockOutputs(block, new_if->outputs());
} else if (getExitStatus(exit_pair) == ExitStatus::WILL) {
replaceBlockOutputs(block, exit_pair.exitValues());
}
// reset the exiting status. an exit should only reach its target block.
// e.g. a continue only affects most recent loop, return in closure
// does not affect enclosing graph.
// Exceptions do not propagate from Loops bc we might not enter the loop,
// and not from closures bc the Function node is a declaration and not
// an invocation.
exit_pair = constructWontExitPair();
}
target_block_ = prev_target_block;
return exit_pair;
}
Value* getUnitValue(const TypePtr& type) {
auto maybe_val = unit_values_.find(type);
if (maybe_val != unit_values_.end()) {
return maybe_val->second;
}
auto unit = graph_->createUninitialized(type)
->insertAfter(graph_->param_node())
->output();
unit_values_[type] = unit;
return unit;
}
// we create one uninitialized value per type, cache it here and reuse it
std::unordered_map<TypePtr, Value*> unit_values_;
// can either be LoopContinuation/ReturnStmt
Symbol current_exit_kind_;
Value* true_val_;
Value* false_val_;
Value* throws_val_;
// when we see current_exit_kind_, this is the block that the values are
// exiting to. For example when we are transforming LoopContinuations
// for i in range(5):
// while i < 3:
// continue
// break
// when we transform the for loop block, target_block_ will be set the for
// block. then, when we enter the while loop, target_block_ will be the while
// loop block. when we are done transforming the while it will be set back to
// the for block.
Block* target_block_ = nullptr;
std::shared_ptr<Graph> graph_;
};
bool inlineConsecutiveIfs(Node* node) {
if (node->kind() != prim::If || node->next()->kind() != prim::If) {
return false;
}
IfView first_if(node);
IfView second_if(node->next());
// the second if must depend on a value outputted in the first if for us to
// inline the second if
if (second_if.cond()->node() != node) {
return false;
}
// both blocks must output a constant value for us to inline, and those values
// must be different. if the values are the same, then the subsequent if node
// will get constant prop'd away, and inlining it into the first node would
// double code size
auto input_offset = second_if.cond()->offset();
auto maybe_then_value = toIValue(first_if.thenOutputs().at(input_offset));
auto maybe_else_value = toIValue(first_if.elseOutputs().at(input_offset));
if (!maybe_then_value || !maybe_else_value ||
maybe_then_value->toBool() == maybe_else_value->toBool()) {
return false;
}
bool then_value = maybe_then_value->toBool();
bool else_value = maybe_else_value->toBool();
for (const auto i : c10::irange(2)) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
Block* first_if_block;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
Block* second_if_block;
if (i == 0) {
first_if_block = first_if.thenBlock();
second_if_block =
then_value ? second_if.thenBlock() : second_if.elseBlock();
} else {
first_if_block = first_if.elseBlock();
second_if_block =
else_value ? second_if.thenBlock() : second_if.elseBlock();
;
}
// we need to replace values that were used in the second if that were
// outputs of the first if with the equivalent value in the scope of the
// block we're copying into
auto value_map = [&](Value* v) {
if (v->node() != first_if.node()) {
return v;
}
auto offset = v->offset();
return first_if_block->outputs().at(offset);
};
// clone from also copies block outputs from second_if_block onto
// first_if_block
first_if_block->cloneFrom(second_if_block, value_map);
}
for (Value* output : second_if.outputs()) {
auto new_out = first_if.node()->addOutput()->copyMetadata(output);
output->replaceAllUsesWith(new_out);
}
second_if.node()->destroy();
return true;
}
// After an early return, we conditionalize all further execution
// This means code like the following:
// if x:
// return 1
// return 2
// Gets generated as one if statement checking `if x`, and then a second if
// statement that conditionalizes execution. We can rewrite cases like these
// into one if statement, so that the above examples gets rewritten to look
// like: if x:
// return 1
// else:
// return 2
void inlineConsecutiveIfs(Block* block) {
for (auto it = block->nodes().begin(), end = block->nodes().end();
it != end;) {
for (Block* b : it->blocks()) {
inlineConsecutiveIfs(b);
}
// if we fused two ifs, we need to check current node and new next node
if (!inlineConsecutiveIfs(*it)) {
it++;
}
}
}
// Adds prim::With nodes to a graph to help handle early exits between
// prim::Enter and prim::Exit nodes. More specifically, it transforms
// IR that looks like this:
//
// %a = prim::Enter(%b)
// <code>
// %c = prim::Exit(%b)
//
// to this:
//
// %a = prim::Enter(%b)
// = prim::With()
// block0():
// <code>
// -> ()
// block1():
// %c = prim::Exit(%b)
// -> ()
//
static void convertEnterExitNodesToWithBlocks(std::shared_ptr<Graph>& graph) {
// First, find all Enter-Exit pairs up front to avoid iterator invalidation
// issues later when moving nodes around. Do this by iterating through the
// nodes of the graph while keeping a stack of encountered Enter nodes. Each
// time an Exit node is seen, its corresponding Enter node must be at the
// top of the stack. Pop it and record the pair.
std::vector<std::pair<Node*, Node*>> enter_exit_pairs;
std::vector<Node*> enter_node_stack;
DepthFirstGraphNodeIterator it(graph);
Node* node = it.next();
while (node) {
if (node->kind() == prim::Enter) {
enter_node_stack.emplace_back(node);
} else if (node->kind() == prim::Exit) {
// enter_node_stack should not be empty.
TORCH_INTERNAL_ASSERT(!enter_node_stack.empty());
// The input to this Exit node should be the same as that of the Enter
// node on the top of the enter_node_stack.
TORCH_INTERNAL_ASSERT(
enter_node_stack.back()->input(0) == node->input(0));
// Record the pair.
enter_exit_pairs.emplace_back(enter_node_stack.back(), node);
enter_node_stack.pop_back();
}
node = it.next();
}
// The stack should be empty; an Exit should have been found for every Enter.
TORCH_INTERNAL_ASSERT(enter_node_stack.empty());
// Now, add a With block for each Enter-Exit pair. The innermost pairs were
// found first, so they will be converted first.
for (auto& pair : enter_exit_pairs) {
Node* enter = pair.first;
Node* exit = pair.second;
auto* with = graph->create(prim::With, /*num_outputs=*/0);
auto* body_block = with->addBlock();
auto* exit_block = with->addBlock();
// Insert the With after the Enter.
Node* cur = enter->next();
Node* insert_point = body_block->param_node();
// Move all of the nodes between the Enter and Exit into the body block.
while (cur != exit) {
auto* next = cur->next();
cur->moveAfter(insert_point);
insert_point = insert_point->next();
cur = next;
}
// Move the Exit node into the exit block.
exit->moveAfter(exit_block->param_node());
with->insertAfter(enter);
}
}
// Removes prim::With nodes from a graph. More specifically, it transforms
// IR that looks like this:
//
// %a = prim::Enter(%b)
// = prim::With()
// block0():
// <code>
// -> ()
// block1():
// %c = prim::Exit(%b)
// ->()
//
// to this:
// %a = prim::Enter(%b)
// <code>
// %c = prim::Exit(%b)
//
static void convertWithBlocksToEnterExitNodes(std::shared_ptr<Graph>& graph) {
// First, find all With blocks to avoid iterator invalidation issues when
// moving nodes around later.
std::vector<Node*> with_nodes;
DepthFirstGraphNodeIterator it(graph);
Node* node = it.next();
while (node) {
if (node->kind() == prim::With) {
with_nodes.emplace_back(node);
}
node = it.next();
}
// For each With node:
for (auto& node : with_nodes) {
auto* body_block = node->blocks().at(0);
auto* exit_block = node->blocks().at(1);
std::vector<Node*> to_append;
// Record all nodes that need to be appended after the Enter that precedes
// the With block to avoid iterator invalidation issues later when moving
// nodes around.
for (auto body_node : body_block->nodes()) {
to_append.emplace_back(body_node);
}
for (auto exit_node : exit_block->nodes()) {
to_append.emplace_back(exit_node);
}
Node* cur = node->prev();
// Move all nodes inside the with block outside of it.
for (auto& node : to_append) {
node->moveAfter(cur);
cur = node;
}
node->destroy();
}
}
// This pass takes in a graph where LoopContinuation & ReturnStmts exist in the
// graph and erases them in the graph, correctly setting block outputs.
// prim::LoopContinuation(*vals) means that the values are targeting the most
// recent loop block. prim::ReturnStmt(*vals) means that the values are
// targeting the most recent Closure or Graph Block. Once we hit an exit node,
// we do not execute any further instructions until the block exit reaches its
// destination. If we encounter a node that contains nested blocks that may
// have hit an exit node, such as an if statement that exits in one block
// and does not exit in the other, we use a boolean value to indicate if the
// exit has been hit or not. Then, we conditionalize further execution.
//
// Python example:
// while i < 5:
// if i == 3:
// i += 1
// continue
// i += 2
//
// -> transforms to:
//
// continue_loop = i < 5
// while continue_loop:
// if i == 3:
// i = i + 1
// continue_loop = i < 5
// did_exit = True
// if did_exit:
// pass
// else:
// i = i + 2
// continue_loop = i < 5
// IR as it enters pass:
// %36 : bool = aten::lt(%i.1, %3)
// %i : int = prim::Loop(%1, %36, %i.1)
// block0(%5 : int, %i.17 : int):
// %8 : bool = aten::eq(%i.17, %7)
// %i.16 : int = prim::If(%8)
// block0():
// %i.6 : int = aten::add(%i.17, %11)
// %33 : bool = aten::lt(%i.6, %3)
// = prim::LoopContinuation(%33, %i.6)
// -> (%i.6)
// block1():
// -> (%i.17)
// %i.13 : int = aten::add(%i.16, %19)
// %4 : bool = aten::lt(%i.13, %3)
// -> (%4, %i.13)
// return (%i)
//
// -> transforms to
//
// %false_val : bool = prim::Constant[value=0]()
// %true_val : bool = prim::Constant[value=1]()
// %40 : int = prim::Uninitialized()
// %39 : bool = prim::Uninitialized()
// %36 : bool = aten::lt(%i.1, %3)
// %i : int = prim::Loop(%1, %36, %i.1)
// block0(%5 : int, %i.17 : int):
// %8 : bool = aten::eq(%i.17, %7)
// %did_exit : bool, %continue_loop : bool, %43 : int, %i.16 : int =
// prim::If(%8)
// block0():
// %i.6 : int = aten::add(%i.17, %11)
// %33 : bool = aten::lt(%i.6, %3)
// -> (%true_val, %33, %i.6, %i.6)
// block1():
// -> (%false_val, %39, %40, %i.17)
// %44 : bool, %i : int = prim::If(%did_exit)
// block0():
// -> (%continue_loop, %43)
// block1():
// %i.13 : int = aten::add(%i.16, %19)
// %4 : bool = aten::lt(%i.13, %3)
// -> (%4, %i.13)
// -> (%44, %i)
void TransformExits(std::shared_ptr<Graph>& graph) {
convertEnterExitNodesToWithBlocks(graph);
ExitTransformer e_loop(graph);
e_loop.transformLoopContinuations();
ExitTransformer e_ret(graph);
e_ret.transformReturnStmts();
inlineConsecutiveIfs(graph->block());
convertWithBlocksToEnterExitNodes(graph);
}
} // namespace jit
} // namespace torch
|