1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
|
#include <torch/csrc/jit/frontend/function_schema_parser.h>
#include <ATen/core/Reduction.h>
#include <ATen/core/type_factory.h>
#include <c10/util/Optional.h>
#include <c10/util/string_utils.h>
#include <torch/csrc/jit/frontend/lexer.h>
#include <torch/csrc/jit/frontend/parse_string_literal.h>
#include <torch/csrc/jit/frontend/schema_type_parser.h>
#include <functional>
#include <memory>
#include <vector>
using at::TypeKind;
using c10::Argument;
using c10::either;
using c10::FunctionSchema;
using c10::IValue;
using c10::ListType;
using c10::make_left;
using c10::make_right;
using c10::OperatorName;
using c10::OptionalType;
namespace torch {
namespace jit {
namespace {
struct SchemaParser {
explicit SchemaParser(const std::string& str)
: L(std::make_shared<Source>(
c10::string_view(str),
c10::nullopt,
0,
nullptr,
Source::DONT_COPY)),
type_parser(L, /*parse_complete_tensor_types*/ false) {}
either<OperatorName, FunctionSchema> parseDeclaration() {
OperatorName name = parseName();
// If there is no parentheses coming, then this is just the operator name
// without an argument list
if (L.cur().kind != '(') {
return make_left<OperatorName, FunctionSchema>(std::move(name));
}
std::vector<Argument> arguments;
std::vector<Argument> returns;
bool kwarg_only = false;
bool is_vararg = false;
bool is_varret = false;
size_t idx = 0;
parseList('(', ',', ')', [&] {
if (is_vararg)
throw ErrorReport(L.cur())
<< "... must be the last element of the argument list";
if (L.nextIf('*')) {
kwarg_only = true;
} else if (L.nextIf(TK_DOTS)) {
is_vararg = true;
} else {
arguments.push_back(parseArgument(
idx++, /*is_return=*/false, /*kwarg_only=*/kwarg_only));
}
});
// check if all arguments are not-default for vararg schemas
if (is_vararg) {
for (const auto& arg : arguments) {
if (arg.default_value().has_value()) {
throw ErrorReport(L.cur())
<< "schemas with vararg (...) can't have default value args";
}
}
}
idx = 0;
L.expect(TK_ARROW);
if (L.nextIf(TK_DOTS)) {
is_varret = true;
} else if (L.cur().kind == '(') {
parseList('(', ',', ')', [&] {
if (is_varret) {
throw ErrorReport(L.cur())
<< "... must be the last element of the return list";
}
if (L.nextIf(TK_DOTS)) {
is_varret = true;
} else {
returns.push_back(
parseArgument(idx++, /*is_return=*/true, /*kwarg_only=*/false));
}
});
} else {
returns.push_back(
parseArgument(0, /*is_return=*/true, /*kwarg_only=*/false));
}
return make_right<OperatorName, FunctionSchema>(
std::move(name.name),
std::move(name.overload_name),
std::move(arguments),
std::move(returns),
is_vararg,
is_varret);
}
c10::OperatorName parseName() {
std::string name = L.expect(TK_IDENT).text();
if (L.nextIf(':')) {
L.expect(':');
name = name + "::" + L.expect(TK_IDENT).text();
}
std::string overload_name = "";
if (L.nextIf('.')) {
overload_name = L.expect(TK_IDENT).text();
}
// default is used as an attribute on the `OpOverloadPacket`
// (obtained using `torch.ops.aten.foo`) to get the operator
// overload with overload name as an empty string
// and so shouldn't be used as an overload name
// also disallow dunder attribute names to be overload names
bool is_a_valid_overload_name =
!((overload_name == "default") || (overload_name.rfind("__", 0) == 0));
TORCH_CHECK(
is_a_valid_overload_name,
overload_name,
" is not a legal overload name for aten operators");
return {name, overload_name};
}
std::vector<either<OperatorName, FunctionSchema>> parseDeclarations() {
std::vector<either<OperatorName, FunctionSchema>> results;
do {
results.push_back(parseDeclaration());
} while (L.nextIf(TK_NEWLINE));
L.expect(TK_EOF);
return results;
}
either<OperatorName, FunctionSchema> parseExactlyOneDeclaration() {
auto result = parseDeclaration();
L.nextIf(TK_NEWLINE);
L.expect(TK_EOF);
return result;
}
Argument parseArgument(size_t /*idx*/, bool is_return, bool kwarg_only) {
// fake and real type coincide except for Layout/MemoryFormat/ScalarType
// the fake type for these is Int instead
auto p = type_parser.parseFakeAndRealType();
auto fake_type = std::move(std::get<0>(p));
auto real_type = std::move(std::get<1>(p));
auto alias_info = std::move(std::get<2>(p));
c10::optional<int32_t> N;
c10::optional<IValue> default_value;
c10::optional<std::string> alias_set;
std::string name;
if (L.nextIf('[')) {
// note: an array with a size hint can only occur at the Argument level
fake_type = ListType::create(std::move(fake_type));
real_type = ListType::create(std::move(real_type));
N = c10::stoll(L.expect(TK_NUMBER).text());
L.expect(']');
auto container = type_parser.parseAliasAnnotation();
if (alias_info) {
if (!container) {
container = c10::optional<at::AliasInfo>(at::AliasInfo());
container->setIsWrite(alias_info->isWrite());
}
container->addContainedType(std::move(*alias_info));
}
alias_info = std::move(container);
if (L.nextIf('?')) {
fake_type =
c10::TypeFactory::create<c10::OptionalType>(std::move(fake_type));
real_type =
c10::TypeFactory::create<c10::OptionalType>(std::move(real_type));
}
}
if (is_return) {
// optionally field names in return values
if (L.cur().kind == TK_IDENT) {
name = L.next().text();
} else {
name = "";
}
} else {
name = L.expect(TK_IDENT).text();
if (L.nextIf('=')) {
// NB: this means we have to unswizzle default too
default_value = parseDefaultValue(*fake_type, fake_type->kind(), N);
}
}
return Argument(
std::move(name),
std::move(fake_type),
std::move(real_type),
N,
std::move(default_value),
!is_return && kwarg_only,
std::move(alias_info));
}
IValue parseSingleConstant(const c10::Type& type, TypeKind kind) {
if (kind == c10::TypeKind::DynamicType) {
return parseSingleConstant(
type, type.expectRef<c10::DynamicType>().dynamicKind());
}
switch (L.cur().kind) {
case TK_TRUE:
L.next();
return true;
case TK_FALSE:
L.next();
return false;
case TK_NONE:
L.next();
return IValue();
case TK_STRINGLITERAL: {
auto token = L.next();
return parseStringLiteral(token.range, token.text());
}
case TK_IDENT: {
auto tok = L.next();
auto text = tok.text();
if ("float" == text) {
return static_cast<int64_t>(at::kFloat);
} else if ("complex" == text) {
return static_cast<int64_t>(at::kComplexFloat);
} else if ("long" == text) {
return static_cast<int64_t>(at::kLong);
} else if ("strided" == text) {
return static_cast<int64_t>(at::kStrided);
} else if ("Mean" == text) {
return static_cast<int64_t>(at::Reduction::Mean);
} else if ("contiguous_format" == text) {
return static_cast<int64_t>(c10::MemoryFormat::Contiguous);
} else {
throw ErrorReport(L.cur().range) << "invalid numeric default value";
}
}
default:
std::string n;
if (L.nextIf('-'))
n = "-" + L.expect(TK_NUMBER).text();
else
n = L.expect(TK_NUMBER).text();
if (kind == TypeKind::ComplexType || n.find('j') != std::string::npos) {
auto imag = c10::stod(n.substr(0, n.size() - 1));
return c10::complex<double>(0, imag);
} else if (
kind == TypeKind::FloatType || n.find('.') != std::string::npos ||
n.find('e') != std::string::npos) {
return c10::stod(n);
} else {
int64_t v = c10::stoll(n);
return v;
}
}
}
IValue convertToList(
const c10::Type& type,
TypeKind kind,
const SourceRange& range,
const std::vector<IValue>& vs) {
switch (kind) {
case TypeKind::ComplexType:
return fmap(vs, [](const IValue& v) { return v.toComplexDouble(); });
case TypeKind::FloatType:
return fmap(vs, [](const IValue& v) { return v.toDouble(); });
case TypeKind::IntType:
return fmap(vs, [](const IValue& v) { return v.toInt(); });
case TypeKind::BoolType:
return fmap(vs, [](const IValue& v) { return v.toBool(); });
case TypeKind::DynamicType:
return convertToList(
type, type.expectRef<c10::DynamicType>().dynamicKind(), range, vs);
default:
throw ErrorReport(range)
<< "lists are only supported for float, int and complex types";
}
}
IValue parseConstantList(const c10::Type& type, TypeKind kind) {
auto tok = L.expect('[');
std::vector<IValue> vs;
if (L.cur().kind != ']') {
do {
vs.push_back(parseSingleConstant(type, kind));
} while (L.nextIf(','));
}
L.expect(']');
return convertToList(type, kind, tok.range, vs);
}
IValue parseTensorDefault(const SourceRange& /*range*/) {
L.expect(TK_NONE);
return IValue();
}
IValue parseDefaultValue(
const c10::Type& arg_type,
TypeKind kind,
c10::optional<int32_t> arg_N) {
auto range = L.cur().range;
switch (kind) {
case TypeKind::TensorType:
case TypeKind::GeneratorType:
case TypeKind::QuantizerType: {
return parseTensorDefault(range);
} break;
case TypeKind::StringType:
case TypeKind::OptionalType:
case TypeKind::NumberType:
case TypeKind::IntType:
case TypeKind::BoolType:
case TypeKind::FloatType:
case TypeKind::ComplexType:
return parseSingleConstant(arg_type, kind);
break;
case TypeKind::DeviceObjType: {
auto device_text =
parseStringLiteral(range, L.expect(TK_STRINGLITERAL).text());
return c10::Device(device_text);
break;
}
case TypeKind::ListType: {
auto elem_type = arg_type.containedType(0);
if (L.cur().kind == TK_IDENT) {
return parseTensorDefault(range);
} else if (arg_N && L.cur().kind != '[') {
IValue v = parseSingleConstant(*elem_type, elem_type->kind());
std::vector<IValue> repeated(*arg_N, v);
return convertToList(*elem_type, elem_type->kind(), range, repeated);
} else {
return parseConstantList(*elem_type, elem_type->kind());
}
} break;
case TypeKind::DynamicType:
return parseDefaultValue(
arg_type,
arg_type.expectRef<c10::DynamicType>().dynamicKind(),
arg_N);
default:
throw ErrorReport(range) << "unexpected type, file a bug report";
}
return IValue(); // silence warnings
}
void parseList(
int begin,
int sep,
int end,
c10::function_ref<void()> callback) {
auto r = L.cur().range;
if (begin != TK_NOTHING)
L.expect(begin);
if (L.cur().kind != end) {
do {
callback();
} while (L.nextIf(sep));
}
if (end != TK_NOTHING)
L.expect(end);
}
Lexer L;
SchemaTypeParser type_parser;
};
} // namespace
either<OperatorName, FunctionSchema> parseSchemaOrName(
const std::string& schemaOrName) {
return SchemaParser(schemaOrName).parseExactlyOneDeclaration();
}
FunctionSchema parseSchema(const std::string& schema) {
auto parsed = parseSchemaOrName(schema);
TORCH_CHECK(
parsed.is_right(),
"Tried to parse a function schema but only the operator name was given");
return std::move(parsed.right());
}
OperatorName parseName(const std::string& name) {
auto parsed = parseSchemaOrName(name);
TORCH_CHECK(
parsed.is_left(),
"Tried to parse an operator name but function schema was given");
return std::move(parsed.left());
}
} // namespace jit
} // namespace torch
|