1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
|
#include <torch/csrc/jit/frontend/schema_matching.h>
#include <ATen/core/interned_strings.h>
#include <ATen/core/jit_type.h>
#include <c10/util/Exception.h>
#include <c10/util/Optional.h>
#include <c10/util/irange.h>
#include <caffe2/serialize/versions.h>
#include <torch/csrc/jit/frontend/builtin_functions.h>
#include <torch/csrc/jit/frontend/error_report.h>
#include <torch/csrc/jit/frontend/function_schema_parser.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/operator_upgraders/utils.h>
#include <torch/csrc/jit/operator_upgraders/version_map.h>
#include <torch/csrc/jit/runtime/operator.h>
namespace torch {
namespace jit {
static inline TypePtr unwrapOptional(TypePtr opt_type) {
if (auto dyn = opt_type->castRaw<c10::DynamicType>()) {
return unwrapOptional(dyn->fallback());
}
if (auto unwrap_list_type = opt_type->cast<OptionalType>()) {
return unwrap_list_type->getElementType();
}
return opt_type;
}
static inline bool isIntOrFloatUsedAsList(
const Value* value,
const Argument& arg) {
// Look for int[N] or float[N]
const auto& v_type = value->type();
if (v_type != FloatType::get() && v_type != IntType::get())
return false;
auto arg_type = unwrapOptional(arg.type());
auto list_type = arg_type->cast<ListType>();
return list_type && list_type->getElementType() == v_type && arg.N();
}
/// Returns true if `type` is a Tuple in which all the elements have the
/// same type or if it's a subtype of `list_type_`.
bool convertibleToList(const TypePtr& type, const TypePtr& list_type_) {
auto list_type = list_type_->castRaw<ListType>();
if (!list_type) {
return false;
}
if (type->isSubtypeOf(*list_type_)) {
return true;
}
if (auto tuple = type->castRaw<TupleType>()) {
return std::all_of(
tuple->elements().begin(),
tuple->elements().end(),
[&](const TypePtr& t) {
// TODO: resolve VarType if necessary
return t->isSubtypeOf(*list_type->getElementType());
});
}
return false;
}
// Applies implicit conversion from value trying to turn it into type
// concrete_type. It succeeds if `return_value->isSubtypeOf(concrete_type)`
Value* tryConvertToType(
const SourceRange& loc,
Graph& graph,
const TypePtr& concrete_type,
Value* value,
bool allow_conversions) {
// treat conversion to Optional[T] as conversions to T
if (OptionalTypePtr op = concrete_type->cast<OptionalType>()) {
if (value->type()->kind() != OptionalType::Kind &&
!value->type()->isSubtypeOf(*NoneType::get())) {
return tryConvertToType(
loc, graph, op->getElementType(), value, allow_conversions);
}
}
// allow temporary, unannotated list literals `[]` to match to arbitrary list
// types
if (value->node()->kind() == prim::EmptyListLiteral &&
concrete_type->cast<ListType>()) {
value = graph
.insertNode(graph.createList(
concrete_type->cast<ListType>()->getElementType(), {}))
->output();
}
if (auto value_tuple = value->type()->cast<TupleType>()) {
// Allow homogeneous tuples to be casted implicitly to lists of appropriate
// types
if (convertibleToList(value->type(), unwrapOptional(concrete_type))) {
auto unpacked = createTupleUnpack(value);
auto elem_type =
unwrapOptional(concrete_type)->expectRef<ListType>().getElementType();
value = graph.insertNode(graph.createList(elem_type, unpacked))->output();
}
// inductively apply implicit conversions to tuples
if (auto concrete_tuple = concrete_type->cast<TupleType>()) {
if (!value_tuple->isSubtypeOf(*concrete_tuple) &&
concrete_tuple->elements().size() == value_tuple->elements().size()) {
auto unpacked = createTupleUnpack(value);
std::vector<Value*> converted;
for (size_t i = 0; i < concrete_tuple->elements().size(); ++i) {
converted.emplace_back(tryConvertToType(
loc,
graph,
concrete_tuple->elements().at(i),
unpacked.at(i),
allow_conversions));
}
value = graph.insertNode(graph.createTuple(converted))->output();
}
}
}
// implicit conversions
if (allow_conversions) {
// Convert tensor or number to concrete int/float types
bool value_isa_tensor = value->type()->isSubtypeOf(*TensorType::get());
bool value_equals_number = *value->type() == *NumberType::get();
bool concrete_float = *concrete_type == *FloatType::get();
bool concrete_complex = *concrete_type == *ComplexType::get();
bool concrete_int = *concrete_type == *IntType::get();
bool concrete_number = *concrete_type == *NumberType::get();
if (value_isa_tensor) {
if (concrete_float) {
value = graph.insert(aten::FloatImplicit, {value}, {}, loc);
} else if (concrete_complex) {
value = graph.insert(aten::ComplexImplicit, {value}, {}, loc);
} else if (concrete_int) {
value = graph.insert(aten::IntImplicit, {value}, {}, loc);
} else if (concrete_number) {
value = graph.insert(aten::ScalarImplicit, {value}, {}, loc);
}
} else if (value_equals_number) {
if (concrete_float) {
value = graph.insert(aten::Float, {value}, {}, loc);
} else if (concrete_complex) {
value = graph.insert(aten::Complex, {value}, {}, loc);
} else if (concrete_int) {
value = graph.insert(aten::Int, {value}, {}, loc);
}
}
// Convert strings to device
if (value->type()->isSubtypeOf(*StringType::get()) &&
concrete_type->isSubtypeOf(*DeviceObjType::get())) {
return graph.insert(aten::device, {value}, {}, loc);
}
}
return value;
}
// Checks if `named_value` can be used as a value for `arg`. If `arg` is a
// VarType, it will be added to the type_env through `matchTypeVariables` as
// the corresponding actual type. If `allow_conversions` is true, implicit
// conversions to the `arg` type may be performed through `tryConvertToType`.
static Value* tryMatchArgument(
const Argument& arg,
Graph& graph,
const SourceRange& loc,
const NamedValue& named_value,
std::ostream* failure_messages,
const std::function<std::ostream&()>& err,
bool allow_conversions,
TypeEnv& type_env) {
Value* value = named_value.value(graph);
// Some functions that take lists of integers or floats for fixed size arrays
// also allow single ints/floats to be passed in their place. The single
// int/float is then repeated to the length of the list
if (isIntOrFloatUsedAsList(value, arg)) {
std::vector<Value*> repeated(*arg.N(), value);
value =
graph.insertNode(graph.createList(value->type(), repeated))->output();
}
// Resolve VarType variables
const MatchTypeReturn matched =
matchTypeVariables(arg.type(), value->type(), type_env);
if (!matched.success()) {
if (failure_messages) {
err() << "Could not match type " << value->type()->repr_str() << " to "
<< arg.type()->repr_str() << " in argument '" << arg.name()
<< "': " << matched.reason() << ".\n";
}
return nullptr;
}
const auto concrete_type = tryEvalTypeVariables(arg.type(), type_env);
if (!concrete_type) {
if (failure_messages) {
err() << "Type variables in type " << arg.type()->repr_str()
<< " could not be inferred from actual type "
<< value->type()->repr_str();
}
return nullptr;
}
// Check if the value can be matched to the arg through any implicit
// conversions
value = tryConvertToType(loc, graph, concrete_type, value, allow_conversions);
std::stringstream ss;
if (!value->type()->isSubtypeOfExt(
*concrete_type, /*why_not=*/(failure_messages) ? &ss : nullptr)) {
if (failure_messages) {
auto& ostream = err()
<< arg.formatTypeMismatchMsg(value->type()->repr_str());
if (auto pt = value->type()->cast<TensorType>()) {
if (pt->isInferredType()) {
std::string inferred_type_hint;
inferred_type_hint = c10::str(
"Inferred the value for argument '",
arg.name(),
"' to be of type 'Tensor' ",
"because it was not annotated with an explicit type.\n");
ostream << inferred_type_hint;
}
}
if (auto v = value->type()->cast<ListType>()) {
if (v->getElementType()->isSubtypeOf(*TensorType::get())) {
ostream << "Empty lists default to List[Tensor]. Add a variable "
"annotation to the assignment to create an empty list "
"of another type (torch.jit.annotate(List[T, []]) where T "
"is the type of elements in the list for Python 2)\n";
}
}
ostream << ss.str();
}
return nullptr;
}
return value;
}
c10::optional<size_t> findInputWithName(
const std::string& name,
at::ArrayRef<NamedValue> kwargs,
bool is_aten) {
for (const auto i : c10::irange(kwargs.size())) {
// TS doesn't understand that the self argument in function
// scheams is renamed to input for the functional variant
if (is_aten && name == "self" && kwargs[i].name() == "input") {
return i;
}
if (kwargs[i].name() == name) {
return i;
}
}
return c10::nullopt;
}
/// Creates a list with the provided values if each value's type can be matched
/// to an argument with type `elem_type`. If a type in `varargs` does not match
/// `elem_type`, nullptr is returned. This is used for creating lists from
/// varargs so that calls like torch.zeros(1, 2, 3) will be matched to
/// aten::zeros(int[]).
static Value* tryCreateList(
const TypePtr& elem_type,
Graph& graph,
const SourceRange& loc,
at::ArrayRef<NamedValue> varargs,
std::ostream* failure_messages,
const std::function<std::ostream&()>& err,
bool convert_tensor_to_num,
TypeEnv& type_env) {
Argument elem_arg("<varargs>", elem_type);
std::vector<Value*> list_elements;
for (const auto& named_value : varargs) {
// Try to convert named_value to elem_type
Value* matched_value = tryMatchArgument(
/*arg=*/elem_arg,
graph,
loc,
named_value,
failure_messages,
err,
/*allow_conversions=*/convert_tensor_to_num,
type_env);
if (!matched_value) {
return nullptr;
}
list_elements.push_back(matched_value);
}
return graph.insertNode(graph.createList(elem_type, list_elements))->output();
}
// Check if it is possible to convert all the remaining non-kwarg arguments
// to a list. This allows zeros(IntArrayRef sizes) to work with zeros(1, 2) or
// zeros(1)
static bool varargsCanBeUsedAsList(
const FunctionSchema& schema,
size_t arg_index,
const Argument& arg) {
// The arg must be the last one in the arg list that is not a kwarg
bool is_last_argument = arg_index + 1 == schema.arguments().size() ||
schema.arguments()[arg_index + 1].kwarg_only();
auto arg_type = arg.type();
if (auto dyn = arg_type->castRaw<c10::DynamicType>()) {
arg_type = dyn->fallback();
}
// The formal must be a list
bool argument_is_list = arg_type->kind() == TypeKind::ListType;
// matching varargs of typevar list nyi
bool typevar_list = argument_is_list &&
arg_type->castRaw<ListType>()->getElementType()->cast<VarType>();
// it must not be a broadcasting list like int[3],
// otherwise a single int is a valid input
bool arg_is_broadcasting_list = bool(arg.N());
return is_last_argument && argument_is_list && !arg_is_broadcasting_list &&
!typevar_list;
}
// Note (@zasdfgbnm):
// This is a workaround for https://github.com/pytorch/pytorch/issues/47964
// Currently JIT does not distinguish ScalarType vs int, so there is really
// no way to distinguish x.view(1) vs x.view(torch.int8). So we have to hardcode
// the aten::view.dtype here to block this overload. This blocklist should be
// removed when JIT fully suports ScalarType as its own type.
bool isBlockListedSchema(const FunctionSchema& schema) {
if (schema.name() == "aten::view" && schema.overload_name() == "dtype") {
return true;
}
return false;
}
static c10::optional<MatchedSchema> tryMatchSchema(
const FunctionSchema& schema,
const SourceRange& loc,
Graph& graph,
at::ArrayRef<NamedValue> args,
at::ArrayRef<NamedValue> kwargs,
c10::optional<NamedValue> self,
std::ostream* failure_messages,
bool allow_conversions) {
if (isBlockListedSchema(schema)) {
return c10::nullopt;
}
auto err = [&]() -> std::ostream& {
*failure_messages << "\n" << schema << ":\n";
return *failure_messages;
};
// For VarTypes, maps VarType name to actual type as it's used with these
// args
TypeEnv type_env;
std::vector<Value*> positional_inputs;
std::vector<bool> used_kwarg(kwargs.size(), false);
auto schema_namespace = schema.operator_name().getNamespace();
bool is_aten = false;
if (schema_namespace.has_value()) {
if (schema_namespace.value() == "aten") {
is_aten = true;
}
}
// if we finish the loop will we have consumed all arguments?
size_t used_args = 0;
for (const auto schema_i : c10::irange(schema.arguments().size())) {
const auto& arg = schema.arguments()[schema_i];
c10::optional<NamedValue> actual_named_value;
if (arg.name() == "self" && self) {
actual_named_value = self;
self = c10::nullopt;
} else if (!arg.kwarg_only() && used_args < args.size()) {
// Try to convert all the remaining non-kwarg arguments (used_args) to a
// list. Allow zeros(IntArrayRef sizes) to work with zeros(1, 2) or
// zeros(1)
if (allow_conversions && varargsCanBeUsedAsList(schema, schema_i, arg)) {
auto value = args[used_args].value(graph);
const auto& actual_type = value->type();
// The actual cannot already be a list
if (actual_type->kind() != TypeKind::ListType &&
!convertibleToList(actual_type, unwrapOptional(arg.type()))) {
auto formal_type = unwrapOptional(arg.type())
->expectRef<ListType>()
.getElementType();
Value* list = tryCreateList(
formal_type,
graph,
loc,
at::ArrayRef<NamedValue>(args).slice(used_args),
failure_messages,
err,
allow_conversions,
type_env);
if (!list) {
return c10::nullopt;
}
used_args = args.size();
positional_inputs.push_back(list);
continue;
}
}
// Set actual_named_value to the argument and mark the arg position as
// used
actual_named_value = args[used_args];
used_args++;
} else if (
auto kwarg_idx = findInputWithName(arg.name(), kwargs, is_aten)) {
const NamedValue& nv = kwargs[*kwarg_idx];
if (used_kwarg[*kwarg_idx]) {
if (failure_messages) {
err() << "Argument " << nv.name()
<< " specified twice in schema, submit a bug report!\n";
}
return c10::nullopt;
}
used_kwarg[*kwarg_idx] = true;
actual_named_value = nv;
} else if (arg.default_value()) {
// Argument has a default value and no value was provided, so use the
// default
actual_named_value = NamedValue(*arg.default_value());
} else {
if (failure_messages) {
err() << "Argument " << schema.arguments()[schema_i].name()
<< " not provided.\n";
}
return c10::nullopt;
}
// Make sure the actual_named_value found matches the type of arg
Value* positional = tryMatchArgument(
arg,
graph,
loc,
*actual_named_value,
failure_messages,
err,
allow_conversions,
type_env);
if (!positional) {
return c10::nullopt;
}
positional_inputs.push_back(positional);
}
// check for unused self argument
if (self != c10::nullopt) {
if (failure_messages) {
err() << "Provided self argument not used in schema.\n";
}
return c10::nullopt;
}
if (schema.is_vararg()) {
for (; used_args < args.size(); ++used_args) {
positional_inputs.push_back(args[used_args].value(graph));
}
}
// check for unused positional arguments
if (used_args < args.size()) {
if (failure_messages) {
err() << "Expected at most " << used_args << " arguments "
<< "but found " << args.size() << " positional arguments.\n";
}
return c10::nullopt;
}
// check for unused kwargs
for (const auto i : c10::irange(kwargs.size())) {
const auto& nv = kwargs[i];
if (!used_kwarg[i]) {
if (failure_messages) {
if (!schema.argumentIndexWithName(nv.name())) {
err() << "Keyword argument " << nv.name() << " unknown.\n";
} else {
err() << "Keyword argument " << nv.name() << " specified twice.\n";
}
}
return c10::nullopt;
}
}
const auto& returns = schema.returns();
auto return_types = fmap(returns, [&](const Argument& r) {
TypePtr result = tryEvalTypeVariables(r.type(), type_env);
TORCH_INTERNAL_ASSERT(
result, r.type()->repr_str(), " has unbound type variables.");
return result;
});
// Codegen does not support return of namedtuples with undefined field names.
// Therefore, either all or none returns has field names.
bool return_has_field_names =
std::all_of(returns.begin(), returns.end(), [&](const Argument& r) {
return r.name().length() > 0;
});
c10::OptNameList return_field_names = c10::nullopt;
if (return_has_field_names) {
return_field_names =
fmap(returns, [&](const Argument& r) { return r.name(); });
}
// construct the full name of the schema for easier look up
auto schema_name = getFullSchemaName(schema);
return MatchedSchema{
std::move(positional_inputs),
std::move(return_types),
std::move(return_field_names),
schema_name};
}
MatchedSchema matchSchema(
const ::c10::FunctionSchema& schema,
const SourceRange& loc,
Graph& graph,
at::ArrayRef<NamedValue> args,
at::ArrayRef<NamedValue> kwargs,
const c10::optional<NamedValue>& self) {
std::stringstream failure_messages;
if (auto result = tryMatchSchema(
schema,
loc,
graph,
args,
kwargs,
self,
&failure_messages,
/*allow_conversions=*/true)) {
return *result;
}
throw ErrorReport(loc) << failure_messages.str();
}
MatchedSchema matchSchema(
const ::c10::FunctionSchema& schema,
const SourceRange& loc,
Graph& graph,
at::ArrayRef<Value*> args,
at::ArrayRef<NamedValue> kwargs) {
std::vector<NamedValue> named_args =
fmap(args, [](Value* v) { return NamedValue(v); });
return matchSchema(schema, loc, graph, named_args, kwargs);
}
static std::string prefixLine(
const std::string& str,
const std::string& prefix) {
std::stringstream ss;
bool was_newline = true;
for (auto c : str) {
if (was_newline)
ss << prefix;
ss.put(c);
was_newline = c == '\n';
}
return ss.str();
}
std::pair<size_t, MatchedSchema> matchSchemas(
const std::vector<const FunctionSchema*>& schemas,
const SourceRange& loc,
Graph& graph,
at::ArrayRef<NamedValue> args,
at::ArrayRef<NamedValue> kwargs,
const c10::optional<NamedValue>& self,
bool render_errors) {
TORCH_INTERNAL_ASSERT(schemas.size() > 0);
// if there is only one schema, we do not need to try without conversions
// first. this is faster and puts less dead code in the graph.
if (schemas.size() == 1) {
return std::make_pair(
0, matchSchema(*schemas.at(0), loc, graph, args, kwargs, self));
}
std::stringstream failure_messages;
for (bool allow_conversions : {false, true}) {
// clear previous error messages
failure_messages.str("");
for (const auto i : c10::irange(schemas.size())) {
const auto matched_schema = tryMatchSchema(
*schemas[i],
loc,
graph,
args,
kwargs,
self,
render_errors ? &failure_messages : nullptr,
allow_conversions);
if (matched_schema) {
return std::make_pair(i, *matched_schema);
}
}
}
// we optimistically assume this call will not error, and avoid formatting the
// error strings. If we discover it did error, then we replay it, recording
// the errors.
if (!render_errors) {
return matchSchemas(
schemas, loc, graph, args, kwargs, self, /*render_errors=*/true);
}
throw ErrorReport(loc) << "Arguments for call are not valid.\n"
<< "The following variants are available:\n"
<< prefixLine(failure_messages.str(), " ")
<< "\nThe original call is";
throw ErrorReport(loc) << failure_messages.str();
}
// pack outputs of a function following python rules. If there is a single value
// return a SimpleValue, otherwise pack all the values into a Tuple.
static Value* packOutputs(
Graph& g,
at::ArrayRef<Value*> values,
c10::OptNameList field_names) {
if (values.size() == 1) {
return values[0];
}
std::shared_ptr<FunctionSchema> schema;
TupleTypePtr named_tuple = nullptr;
if (field_names) {
auto types = fmap(values, [](Value* v) { return v->type(); });
named_tuple =
TupleType::createNamed(c10::nullopt, field_names.value(), types);
}
return g.insertNode(g.createTuple(values, named_tuple))->output();
}
// Given a successful match between operator schema and symbol, emit a node
// with the appropriate inputs and outputs.
static Value* emitBuiltinNode(
const MatchedSchema& matched_schema,
const SourceRange& loc,
Graph& graph,
Symbol name,
c10::optional<size_t> version) {
auto n = graph.insertNode(graph.create(name, matched_schema.inputs, 0))
->setSourceRange(loc);
for (auto& ret : matched_schema.return_types) {
n->addOutput()->setType(ret);
}
// assert that we did indeed create an op that has implementation
// otherwise schema and dispatch are not in sync ONLY if the op is up
// to date with the server version
if (!version.has_value() ||
isOpSymbolCurrent(matched_schema.schema_name, version.value())) {
n->getOperation();
} else {
n->setHistoricSchemaName(matched_schema.schema_name);
}
return packOutputs(graph, n->outputs(), matched_schema.return_field_names);
}
std::string getFullSchemaName(const ::c10::FunctionSchema& schema) {
if (schema.overload_name() != "") {
return schema.operator_name().name + "." + schema.overload_name();
}
return schema.operator_name().name;
}
// Search for operators matching the provided symbol name and input types.
// If one is found, emit a node to the graph for that operator.
Value* emitBuiltinCall(
const SourceRange& loc,
Graph& graph,
Symbol name,
at::ArrayRef<NamedValue> args,
at::ArrayRef<NamedValue> kwargs,
const c10::optional<NamedValue>& self) {
const auto& variants = getAllOperatorsFor(name);
const auto& builtin_functions = getAllBuiltinFunctionsFor(name);
// first let's set the graph's version
auto graph_version = graph.get_op_version();
std::stringstream failure_messages;
std::vector<const FunctionSchema*> schemas;
// we append them later to schemas because
// parseSchema returns rvalue which can not
// be casted to const pointer.
std::vector<FunctionSchema> upgrader_schemas;
schemas.reserve(variants.size());
for (const std::shared_ptr<Operator>& op : variants) {
bool found_upgrader = false;
auto op_name = getFullSchemaName(op->schema());
if (graph_version.has_value()) {
auto version_entry = get_operator_version_map().find(op_name);
if (version_entry != get_operator_version_map().end()) {
auto old_schema_entry =
findUpgrader(version_entry->second, graph_version.value());
if (old_schema_entry.has_value()) {
FunctionSchema old_schema =
parseSchema(old_schema_entry.value().old_schema);
upgrader_schemas.push_back(old_schema);
found_upgrader = true;
} else {
if (!isOpCurrentBasedOnUpgraderEntries(
version_entry->second, graph_version.value())) {
TORCH_INTERNAL_ASSERT(false, "Valid upgrader must be present");
}
}
}
}
if (!found_upgrader)
schemas.push_back(&op->schema());
}
// we might have seen old historic
// ops that are deprecated
if (variants.empty()) {
auto oldSchemas =
loadPossibleHistoricOps(name.toQualString(), graph_version);
upgrader_schemas.reserve(oldSchemas.size());
for (const auto& old_schema_entry : oldSchemas) {
FunctionSchema old_schema = parseSchema(old_schema_entry);
upgrader_schemas.emplace_back(old_schema);
}
}
// TODO (tugsuu): make sure this is optimized later
for (const auto& schema : upgrader_schemas) {
schemas.push_back(&schema);
}
for (const auto method : builtin_functions) {
method->ensure_defined();
schemas.push_back(&method->getSchema());
}
// no operators found with the same name, print out similarly named operators
if (schemas.size() == 0) {
const auto close_symbols = findSimilarOperators(name);
auto error = ErrorReport(loc);
const auto& user_function_name = name.toQualString();
error << "Unknown builtin op: " << user_function_name << ".\n";
if (close_symbols.size() == 0) {
error
<< "Could not find any similar ops to " << user_function_name
<< ". This op may not exist or may not be currently supported in TorchScript.\n";
} else {
error << "Here are some suggestions: \n";
for (const auto& sym : close_symbols) {
error << "\t" << sym.toQualString() << "\n";
}
error << "\nThe original call is";
}
throw error;
}
auto matched = matchSchemas(schemas, loc, graph, args, kwargs, self);
if (matched.first < variants.size() + upgrader_schemas.size()) {
return emitBuiltinNode(matched.second, loc, graph, name, graph_version);
} else {
auto& fn = *builtin_functions[matched.first - variants.size()];
// we inline builtin calls because they are normally very small
// wrappers and are not useful for keeping around to debug
return insertGraph(
graph, *toGraphFunction(fn).graph(), matched.second.inputs)
.at(0);
}
}
} // namespace jit
} // namespace torch
|