File: alias_analysis.cpp

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (1985 lines) | stat: -rw-r--r-- 64,749 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
#include <torch/csrc/jit/ir/alias_analysis.h>

#include <ATen/core/interned_strings.h>
#include <c10/util/flat_hash_map.h>
#include <c10/util/irange.h>
#include <torch/csrc/jit/api/function_impl.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/inliner.h>
#include <torch/csrc/jit/passes/utils/subgraph_utils.h>
#include <torch/csrc/jit/runtime/operator.h>
#include <torch/csrc/utils/memory.h>
#include <fstream>

namespace torch {
namespace jit {

namespace {

c10::MaybeOwned<TypePtr> toSingleType(const AliasTypeSet& mut_types) {
  return mut_types.size() == 1
      ? c10::MaybeOwned<TypePtr>::borrowed(mut_types[0])
      : c10::MaybeOwned<TypePtr>::owned(c10::UnionType::create(mut_types));
}

// This class determines whether a type is mutable, and, if so, it maps
// the type to its "mutable equivalent" (see definition in
// `mapTypeToAliasTypeSet`). It uses a cache of TypePtrs to speed up these
// type lookups
class MutableTypePtrHelper {
 public:
  explicit MutableTypePtrHelper(
      ska::flat_hash_map<TypePtr, AliasTypeSet>* mutable_type_cache)
      : mutable_type_cache_(mutable_type_cache) {}

  // Map any mutable type to a type such that all other types which the
  // mutable type can alias will be mapped to the same type. For
  // example, calling this method on `Optional[List[int]]` should be
  // the same as calling this method on `List[int]`.
  //
  // Rules:
  //   - If the type is not mutable, return `nullopt`
  //   - If the type is a `Tuple`, that means that it's an immutable
  //     object that can itself contain mutable objects. We want to make
  //     sure that the mutable objects are correctly aliased, so we
  //     remove the immutable objects. (For example,
  //     `Tuple[int, Tensor]` would become `Tuple[Tensor]`, while
  //     `Tuple[int, str]` would be returned as `nullopt`.) This is a
  //     convenience that makes it easy to check if the `Tuple`
  //     contains only immutable objects, though it's not technically
  //     necessary
  //   - For any Tensor type (including Tensor types that are part of
  //     a larger container, e.g. `List[Tensor]`), return the
  //     "unshaped" version of that Tensor. An "unshaped" Tensor is a
  //     Tensor with shape information removed. For example, a Tensor
  //     of dimension 4 would map to the same type as a Tensor of
  //     dimension 1. This allows us to treat all subclasses of Tensor
  //     as a single, homogenous "Tensor" type.
  c10::optional<AliasTypeSet> mapTypeToAliasTypeSet(const TypePtr& type) {
    if (mutable_type_cache_) {
      const AliasTypeSet* result = mapTypeToBorrowedAliasTypeSet(type);
      if (result) {
        return *result;
      }
    }
    return mapTypeToAliasTypeSetImpl(type);
  }

  const AliasTypeSet* mapTypeToBorrowedAliasTypeSet(const TypePtr& type) {
    TORCH_INTERNAL_ASSERT_DEBUG_ONLY(mutable_type_cache_ != nullptr);
    auto maybe_type_mapping = mutable_type_cache_->find(type);
    if (maybe_type_mapping != mutable_type_cache_->end()) {
      return &maybe_type_mapping->second;
    }

    auto mutable_types = mapTypeToAliasTypeSetImpl(type);
    if (mutable_types) {
      auto it =
          mutable_type_cache_->emplace(type, std::move(*mutable_types)).first;
      return &it->second;
    } else {
      return nullptr;
    }
  }

 private:
  c10::optional<AliasTypeSet> mapTypeToAliasTypeSetImpl(const TypePtr& type) {
    switch (type->kind()) {
      case TypeKind::ListType:
      case TypeKind::DictType:
      case TypeKind::ClassType:
      case TypeKind::TensorType:
        // TODO: Look up cached contained types. this is kind of tricky
        // because a `List[Optional[T]]` should still be
        // `List[Optional[Unshaped(T)]]`, but
        // `mapTypeToAliasTypeSet(Optional[T])` should be `T`
        return AliasTypeSet{unshapedType(type)};
      case TypeKind::UnionType: {
        AliasTypeSet mutable_types;
        for (const TypePtr& inner :
             type->expectRef<UnionType>().containedTypes()) {
          if (auto maybe_inner_types = mapTypeToAliasTypeSet(inner)) {
            mutable_types.insert(
                mutable_types.end(),
                (*maybe_inner_types).begin(),
                (*maybe_inner_types).end());
          }
        }
        if (mutable_types.size() == 0) {
          return c10::nullopt;
        }
        return mutable_types;
      }
      case TypeKind::OptionalType: {
        auto inner = type->castRaw<OptionalType>()->getElementType();
        return mapTypeToAliasTypeSet(inner);
      }
      case TypeKind::AnyType:
        return {AliasTypeSet{type}};
      case TypeKind::FutureType: {
        if (auto maybe_mut_types = mapTypeToAliasTypeSet(
                type->castRaw<FutureType>()->getElementType())) {
          return {AliasTypeSet{
              FutureType::create(*toSingleType(*maybe_mut_types))}};
        }
        return c10::nullopt;
      }
      case TypeKind::TupleType: {
        std::vector<TypePtr> mutable_types;
        for (const TypePtr& inner : type->expectRef<TupleType>().elements()) {
          if (auto maybe_inner_types = mapTypeToAliasTypeSet(inner)) {
            mutable_types.insert(
                mutable_types.end(),
                (*maybe_inner_types).begin(),
                (*maybe_inner_types).end());
          }
        }
        if (mutable_types.size() == 0) {
          return c10::nullopt;
        }
        return {AliasTypeSet{TupleType::create(mutable_types)}};
      }
      default:
        return c10::nullopt;
    }
  }
  ska::flat_hash_map<TypePtr, AliasTypeSet>* mutable_type_cache_;
};

bool isMutableTypeImpl(
    const TypePtr& type,
    ska::flat_hash_map<TypePtr, AliasTypeSet>* mutable_type_cache) {
  // Check common cases to avoid recursively constructing type in
  // `mapTypeToAliasTypeSetPtrImpl`
  auto kind = type->kind();
  if (kind == TypeKind::TensorType || kind == TypeKind::ListType ||
      kind == TypeKind::ClassType || kind == TypeKind::DictType) {
    return true;
  }
  MutableTypePtrHelper helper(mutable_type_cache);
  if (mutable_type_cache) {
    return helper.mapTypeToBorrowedAliasTypeSet(type) != nullptr;
  } else {
    return helper.mapTypeToAliasTypeSet(type).has_value();
  }
}

} // namespace

// Static `isMutableType` does not use cache of type -> mutable type equivalent
bool AliasDb::isMutableType(const TypePtr& type) {
  return isMutableTypeImpl(type, nullptr);
}

bool AliasDb::isMutableType(const Value* v) {
  return isMutableType(v->type());
}

// Make use of type -> mutable cache
bool AliasDb::isMutableTypeInternal(const TypePtr& type) const {
  return isMutableTypeImpl(type, &mapped_mutable_types_);
}

bool AliasDb::isMutableTypeInternal(const Value* v) const {
  return isMutableTypeInternal(v->type());
}

const AliasTypeSet* AliasDb::mapTypeToAliasTypeSetPtr(
    const TypePtr& type) const {
  MutableTypePtrHelper helper(&mapped_mutable_types_);
  return helper.mapTypeToBorrowedAliasTypeSet(type);
}

AliasDb::~AliasDb() = default;

// Structure used during analysis to keep track of all writes at a high
// level. When the analysis is completed, this will be used to construct
// a more efficient WriteIndex
struct AliasDb::WriteRegistry {
  void registerWrite(const Value* v, Node* n) {
    writes_[n].emplace_back(v);
  }
  void registerWriteToAllContained(const Value* v, Node* n) {
    containedWrites_[n].emplace_back(v);
  }
  void registerWriteToAllWildcards(Node* n) {
    writesToAllWildcards_.insert(n);
  }
  std::unordered_map<Node*, std::vector<const Value*>> writes_;
  std::unordered_map<Node*, std::vector<const Value*>> containedWrites_;
  std::unordered_set<Node*> writesToAllWildcards_;
};

AliasDb::AliasDb(
    std::shared_ptr<Graph> graph,
    bool isFrozen,
    bool descendFunctionCalls)
    : graph_(std::move(graph)),
      isFrozen_(isFrozen),
      descend_function_calls_(descendFunctionCalls),
      memoryDAGBuilder_(std::make_unique<MemoryDAGBuilder>()),
      writeRegistry_(std::make_unique<AliasDb::WriteRegistry>()) {
  analyze(graph_);

  memoryDAG_ = std::make_unique<MemoryDAG>(std::move(memoryDAGBuilder_));
  memoryDAGBuilder_ = nullptr; // to make further access a hard error

  memoryDAG_->setWildcards(
      wildcards_, elementMap_, [&](const Value* v) -> Element* {
        return getWildcard(v->type());
      });

  // Now we build up the various write indices based on information in the write
  // registry that we populated during analysis

  // Initialize the write index
  writeIndex_ = TWriteIndex();
  auto& writeIndex = *writeIndex_; // to make operator[] less ugly

  // Build the write index
  for (const auto& write : writeRegistry_->writes_) {
    Node* node = write.first;
    const std::vector<const Value*> writtenValues = write.second;
    for (const Value* writtenValue : writtenValues) {
      auto it = elementMap_.find(writtenValue);
      TORCH_INTERNAL_ASSERT(
          it != elementMap_.end(), "Tried to write to value not in MemoryDAG");
      const auto& writtenMemoryLocations =
          memoryDAG_->getMemoryLocations(it->second);
      writeIndex[node] |= writtenMemoryLocations;
    }
  }

  for (const auto& write : writeRegistry_->containedWrites_) {
    Node* node = write.first;
    const std::vector<const Value*>& writtenValues = write.second;
    for (const Value* writtenValue : writtenValues) {
      auto elem = elementMap_.at(writtenValue);
      MemoryLocations writtenMemoryLocations;
      memoryDAG_->collectAllContainedMemoryLocations(
          elem, writtenMemoryLocations);
      writeIndex[node] |= writtenMemoryLocations;
    }
  }

  for (const auto& write : writeRegistry_->writesToAllWildcards_) {
    for (const auto& pr : wildcardIndex_) {
      writeIndex[write].set(pr.second->index);
    }
  }

  // Now that we've built the write index, we can null out the WriteRegistry to
  // make future access an error. In this way we prevent the index from getting
  // out of sync (since we have no way of registering new writes)
  writeRegistry_ = nullptr;

  // Initialize the write cache
  buildWrittenToLocationsIndex();
  GRAPH_DEBUG(toString());
}

bool AliasDb::isMutable(Node* n) const {
  ValueSet vs;
  for (const auto input : n->inputs()) {
    vs.insert(input);
  }
  return writesToAlias(n, vs);
}

bool AliasDb::hasInputWriters(const Node* n) const {
  for (const auto input : n->inputs()) {
    if (hasWriters(input)) {
      return true;
    }
  }
  return false;
}

bool AliasDb::hasOutputWriters(const Node* n) const {
  for (const auto output : n->outputs()) {
    if (hasWriters(output)) {
      return true;
    }
  }
  return false;
}

bool AliasDb::hasWriters(const Node* n) const {
  return hasInputWriters(n) || hasOutputWriters(n);
}

bool AliasDb::hasWriters(const Value* v) const {
  if (v->mustBeNone()) {
    return false;
  }

  auto it = elementMap_.find(v);
  if (it == elementMap_.end()) {
    return false;
  }

  const auto& el = it->second;
  return writtenToLocationsIndex_->intersects(
      memoryDAG_->getMemoryLocations(el));
}

void AliasDb::getWritesImpl(Node* n, MemoryLocations& ret) const {
  if (writeIndex_->count(n)) {
    const auto& writes = writeIndex_->at(n);
    ret |= writes;
  }

  for (auto block : n->blocks()) {
    for (auto node : block->nodes()) {
      getWritesImpl(node, ret);
    }
  }
}

// Does `n` write to an alias of one of the values in `vs`?
bool AliasDb::writesToAlias(Node* n, const ValueSet& vs) const {
  const auto writtenTo = getWrites(n);
  if (writtenTo.empty()) {
    return false;
  }

  MemoryLocations locs;
  for (const auto v : vs) {
    auto it = elementMap_.find(v);
    if (it != elementMap_.end()) {
      const auto& vlocs = memoryDAG_->getMemoryLocations(it->second);
      if (writtenTo.intersects(vlocs)) {
        return true;
      }
    }
  }

  return false;
}

MemoryLocations AliasDb::getWrites(Node* n) const {
  MemoryLocations writes;
  getWritesImpl(n, writes);
  return writes;
}

void AliasDb::getReadsImpl(Node* n, MemoryLocations& ret) const {
  for (const auto input : n->inputs()) {
    auto it = elementMap_.find(input);
    if (it != elementMap_.end()) {
      auto el = it->second;

      // Add all memory locations this element may alias and their contained
      // elements
      memoryDAG_->collectAllContainedMemoryLocations(el, ret);
    }
  }

  for (auto block : n->blocks()) {
    for (auto node : block->nodes()) {
      getReadsImpl(node, ret);
    }
  }
}

MemoryLocations AliasDb::getReads(Node* n) const {
  MemoryLocations reads;
  getReadsImpl(n, reads);
  return reads;
}

std::string AliasDb::getElementName(const Element* e) const {
  if (e->values.empty()) {
    // Not the most efficient way, but given the fact there are
    // not too many types and even fewer of them will end up in
    // `wildcardIndex_`, we should be fine with a linear search
    // each time we hit a Wildcard leaf
    for (const auto& ent : wildcardIndex_) {
      if (ent.second == e) {
        return std::string("WILDCARD for type ") + ent.first->str();
      }
    }
    return "WILDCARD";
  } else {
    std::ostringstream ss;
    if (e->values.size() == 1) {
      ss << "%" << (*e->values.begin())->debugName();
      return ss.str();
    }
    ss << "(";
    for (const Value* v : e->values) {
      ss << "%" << v->debugName() << ", ";
    }
    ss << ")";
    return ss.str();
  }
}

void AliasDb::dump() const {
  std::cout << toString();
}

std::string AliasDb::toString() const {
  std::stringstream ss{};

  ss << "\n===1. GRAPH===\n";
  ss << graph_->toString();

  ss << "\n===2. ALIAS DB===\n";
  for (const auto& ptrPair : elementMap_) {
    const auto element = ptrPair.second;
    int ct = 0;
    if (!element->pointsTo.empty()) {
      ss << getElementName(element) << " points to: ";
      for (const auto pointedTo : element->pointsTo) {
        if (ct > 0) {
          ss << ", ";
        }
        ++ct;
        ss << getElementName(memoryDAG_->fromIndex(pointedTo));
      }
      ss << "\n";
    }
    ct = 0;
    if (!element->containedElements.empty()) {
      ss << getElementName(element) << " contains: ";
      for (const auto contained : element->containedElements) {
        ss << getElementName(memoryDAG_->fromIndex(contained));
        if (ct > 0) {
          ss << ", ";
        }
        ++ct;
      }
      ss << "\n";
    }
  }

  ss << "\n===3. Writes===\n";
  for (const auto& pr : *writeIndex_) {
    const auto node = pr.first;
    const auto& values = pr.second;
    ss << *node;
    ss << "  ";
    for (const auto value : values) {
      ss << getElementName(memoryDAG_->fromIndex(value)) << ", ";
    }
    ss << "\n";
  }
  ss << "\n";
  return ss.str();
}

bool AliasDb::dumpToGraphvizFile(const char* filename) const {
  std::ofstream dot_file(filename);
  if (!dot_file.good()) {
    std::cout << "Failed to create Graphviz file: '" << filename << "'\n";
    return false;
  }
  dot_file << toGraphviz();
  return true;
}

std::string AliasDb::toGraphviz() const {
  std::stringstream dot;

  // Local helper to generate a graphviz-friendly name encoding
  // See also AliasDb::getElementName()
  const auto name = [this](const Element* e) -> std::string {
    if (e->values.empty()) {
      for (const auto& ent : wildcardIndex_) {
        if (ent.second == e) {
          return std::string("\"WILDCARD for ") + ent.first->str() + "\"";
        }
      }
      return "\"WILDCARD\"";
    } else {
      std::ostringstream ss;
      if (e->values.size() == 1) {
        ss << "\"\\%" << (*e->values.begin())->debugName() << "\"";
        return ss.str();
      }
      ss << "\"(";
      for (const Value* v : e->values) {
        ss << "\\%" << v->debugName() << ", ";
      }
      ss << ")\"";
      return ss.str();
    }
  };

  // Include the textual representation for reference
  dot << "/*\n";
  dot << toString();
  dot << "*/\n";

  dot << "digraph alias_db {\n"
      << "  rankdir=LR\n"
      << "  node [shape=rect, color=gray];\n"
      << "  edge [color=black];\n";

  for (const auto& ptrPair : elementMap_) {
    const auto element = ptrPair.second;
    if (!element->pointsTo.empty()) {
      for (const auto pointedTo : element->pointsTo) {
        dot << "  " << name(element) << " -> "
            << name(memoryDAG_->fromIndex(pointedTo)) << "\n";
      }
    }
    if (!element->containedElements.empty()) {
      for (const auto contained : element->containedElements) {
        dot << "  " << name(element) << " -> "
            << name(memoryDAG_->fromIndex(contained))
            << " [style=dashed, color=blue]\n";
      }
    }
  }

  dot << "}\n";
  return dot.str();
}

void AliasDb::analyze(const std::shared_ptr<Graph>& graph) {
  for (auto input : graph->inputs()) {
    setWildcard(input);
  }
  analyze(graph->block());
}

void AliasDb::analyze(Block* block) {
  for (auto node : block->nodes()) {
    analyze(node);
  }
}

void AliasDb::analyze(Node* node) {
  analyzeImpl(node);
}

// Returns true if analysis was run using
// the registered analyzer.
bool AliasDb::tryRegisteredAnalysis(Node* node) {
  const Operator& op = node->getOperator();
  auto analysis = op.aliasAnalysisKind();
  if (AliasAnalysisKind::PURE_FUNCTION == analysis) {
    analyzeCreator(node);
    return true;
  }
  return false;
}

// The basic strategy is:
//   1. Retrieve alias information for every input.
//   2. Use the node's schema's alias annotations to propgagate alias/write
//      information to the outputs. For unschematized nodes, a special analyzer
//      will have to be handwritten.
void AliasDb::analyzeImpl(Node* node) {
  auto op = node->maybeOperator();
  const bool hasSpecialCase = aliasAnalysisHasSpecialCaseFor(node->kind());
  if (op) {
    const auto analysis = op->aliasAnalysisKind();

    const bool registeredAsSpecialCase =
        analysis == AliasAnalysisKind::INTERNAL_SPECIAL_CASE;
    if (C10_UNLIKELY(registeredAsSpecialCase && !hasSpecialCase)) {
      TORCH_INTERNAL_ASSERT(
          false,
          "Op ",
          node->kind().toDisplayString(),
          " is registered with AliasAnalysisKind::INTERNAL_SPECIAL_CASE but doesn't have a special case.");
    } else if (C10_UNLIKELY(!registeredAsSpecialCase && hasSpecialCase)) {
      TORCH_INTERNAL_ASSERT(
          false,
          "Op ",
          node->kind().toDisplayString(),
          " has a special case and should be registered with AliasAnalysisKind::INTERNAL_SPECIAL_CASE but is registered with ",
          c10::toString(analysis));
    }
  } else {
    if (!hasSpecialCase) {
      std::ostringstream oss;
      for (const auto input : node->inputs()) {
        oss << input->type()->str() << ", ";
      }
      oss << "\n\nCandidates:";
      const auto& candidates = getAllOperatorsFor(node->kind());
      for (const auto& candidate : candidates) {
        oss << "\n\t" << candidate->schema();
      }
      TORCH_INTERNAL_ASSERT(
          0,
          "We don't have an op for ",
          node->kind().toDisplayString(),
          " but it isn't a special case.  ",
          "Argument types: ",
          oss.str());
    }
  }

  // These nodes are not schematized, so we need to handle them specially
  switch (node->kind()) {
    case prim::If:
      return analyzeIf(node);
    case prim::Loop:
      return analyzeLoop(node);
    case prim::FusionGroup:
    case prim::CudaFusionGroup:
    case prim::oneDNNFusionGroup:
    case prim::FunctionalGraph:
    case prim::DifferentiableGraph:
    case prim::FallbackGraph:
      return analyzeSubgraph(node);
    case prim::fork:
      return analyzeFork(node);
    case aten::wait:
      return analyzeWait(node);
    case prim::rpc_async:
    case prim::rpc_sync:
    case prim::rpc_remote:
      return analyzeRpcAsync(node);
    case aten::batch_norm:
      return analyzeBatchNorm(node);
    case aten::instance_norm:
      return analyzeInstanceNorm(node);
    case prim::GradOf:
      return analyzeGradOf(node);
    case prim::BroadcastMKLDNNTensors: {
      makePointerTo(node->outputs().at(0), node->inputs().at(0));
      makePointerTo(node->outputs().at(1), node->inputs().at(1));
      return;
    }
    // TODO: think more about TensorExpr alias correctness
    case prim::TensorExprGroup:
    case prim::TensorExprDynamicGroup:
    case prim::MKLDNNGroup:
    case prim::ConstantMKLDNNTensor:
    case prim::StaticSubgraph:
    case prim::Constant:
    case prim::AutogradZero:
    case prim::AutogradAdd:
    case prim::FusedConcat:
    case prim::MMTreeReduce:
    case prim::MMBatchSide:
    case prim::BroadcastSizes:
    case prim::ChunkSizes:
    // this should never be seen outside of initial compilation
    // but because of some dependencies with closure invoking alias
    // db needs to be handled here
    case prim::EmptyListLiteral:
    case prim::Closure:
    case prim::CreateObject:
    case prim::tolist:
    case prim::Uninitialized:
      return analyzeCreator(node);
    case prim::TupleConstruct:
    case prim::DictConstruct:
    case prim::ListConstruct:
      return analyzeContainerConstruct(node);
    case prim::TupleUnpack:
    case prim::TupleIndex:
    case prim::TupleSlice:
    case prim::ListUnpack:
    case prim::PythonOp:
    case prim::GetAttr:
      if (isFrozen_ && node->kind() == prim::GetAttr) {
        auto& ty = node->input()->type();
        if (ty->expectRef<ClassType>().is_module()) {
          return analyzeCreator(node);
        }
      }
      return analyzeExtractor(node);
    case prim::unchecked_cast:
      return makePointerTo(node->output(), node->input());
    case prim::ConstantChunk:
      return analyzeChunk(node);
    case prim::BroadcastingChunk:
      return analyzeBroadcastingChunk(node);
    case prim::SetAttr:
      return analyzeSetAttr(node);
    case prim::profile_ivalue:
    case prim::profile:
      makePointerTo(node->output(), node->inputs().at(0));
      return;
    case prim::TypeCheck:
    case prim::RequiresGradCheck: {
      auto num_inputs = node->inputs().size();
      for (const auto i : c10::irange(num_inputs)) {
        makePointerTo(node->outputs().at(i), node->inputs().at(i));
      }
      return;
    }
    case prim::BailOut:
      TORCH_INTERNAL_ASSERT(
          node->inputs().at(0)->node()->kind() == prim::BailoutTemplate);
      makePointerTo(node->output(), node->inputs().at(1));
      return;
    case prim::Guard:
      makePointerTo(node->output(), node->inputs().at(0));
      return;
    case prim::CallFunction:
    case prim::CallMethod: {
      // TODO: this can be improved with summarizes of what the function does
      // for now we assume the worst
      if (!descend_function_calls_) {
        return analyzeConservative(node);
      }
      auto g = tryToGraphFunction(node);
      if (!g) {
        return analyzeConservative(node);
      }
      // this is an unoptimized path - we copy the subgraph for each function
      // call past the first - so we do not generally enable the recursive
      // analysis. use cases for fine-grained alias analysis without inlining
      // are very uncommon
      auto graph = g->optimized_graph();
      // alias analysis will use Value* as mappings for information,
      // so for each analysis of a particular function call we need a new graph
      // for all copies made, store them for duration of analysis so we do not
      // run into lifetime issues with the graph
      std::vector<std::shared_ptr<Graph>>& graphs =
          function_call_copies_[graph.get()];
      if (graphs.size() == 0) {
        graphs.push_back(graph);
        analyzeSubgraph(node, graph);
      } else {
        auto copied_graph = graph->copy();
        graphs.push_back(copied_graph);
        analyzeSubgraph(node, copied_graph);
      }
      return;
    }
    case prim::Enter:
    case prim::Exit:
      // TODO: this can be improved with summarizes of what the function does
      // for now we assume the worst
      // NB: update safeToChangeAliasingRelationship if changed
      return analyzeConservative(node);
    case prim::Print:
    case prim::isinstance:
      // These ops do nothing
      return;
    default:
      if (tryRegisteredAnalysis(node)) {
        return;
      }
  }

  TORCH_INTERNAL_ASSERT(op, "We should have an op schema if we get to here");
  const AliasAnalysisKind analysis = op->aliasAnalysisKind();
  TORCH_INTERNAL_ASSERT(
      analysis != AliasAnalysisKind::INTERNAL_SPECIAL_CASE &&
          !aliasAnalysisHasSpecialCaseFor(node->kind()),
      "Special cases should be handled already if we're here.");

  if (node->kind().is_aten() || node->kind().is_prim() ||
      node->kind().is_cuda()) {
    // TODO There is nothing in the system that relies on aten:: and prim::
    // ops using AliasAnalysisKind::FROM_SCHEMA or
    // AliasAnalysisKind::INTERNAL_SPECIAL_CASE, but this is the intended
    // behavior for all current ops and a good error check. We can consider
    // lifting this constraint later if we have a use case for it.
    TORCH_INTERNAL_ASSERT(
        analysis == AliasAnalysisKind::FROM_SCHEMA ||
            analysis == AliasAnalysisKind::CONSERVATIVE,
        "aten:: and prim:: operators should use AliasAnalysisKind::FROM_SCHEMA or "
        "AliasAnalysisKind::CONSERVATIVE(if really necessary), but ",
        node->kind().toDisplayString(),
        " doesn't. Note: Ideally, prim:: operators actually shouldn't have a schema ",
        "and then use AliasAnalysisKind::INTERNAL_SPECIAL_CASE instead.");
  }

  if (analysis == AliasAnalysisKind::CONSERVATIVE) {
    // TODO A previous implementation of alias analysis always accessed
    // node->schema , which cause the schema caches in the Node class to be
    // filled for the full graph. Unfortunately, our JIT passes started relying
    // on that, so we need to keep doing this. Details: in
    // caffe2/torch/onnx/utils.py, _jit_pass_onnx is called on an invalid JIT
    // graph because we called _jit_pass_erase_number_types right before and
    // ints are now Tensors instead. So if _jit_pass_onnx tries to look up
    // operator schemas, it will crash. However, _jit_pass_constant_propagation,
    // which is called before it, runs alias analysis and prefills the schema
    // cache in the all Node instances so that _jit_pass_onnx doesn't look up
    // operators to get the schemas anymore. We should fix this.
    node->schema(); // fill the schema cache in the Node class

    return analyzeConservative(node);
  }

  TORCH_INTERNAL_ASSERT(
      analysis == AliasAnalysisKind::FROM_SCHEMA,
      "AliasAnalysisKind::CONSERVATIVE/PURE_FUNCTION/INTERNAL_SPECIAL_CASE should already have been handled above");
  const auto& schema = node->schema();

  // Bind the schema's "formal" alias annotation to the actual values those
  // schema arguments represent
  std::unordered_map<Symbol, Value*> formalToActual;
  for (const auto i : c10::irange(schema.arguments().size())) {
    const at::AliasInfo* formal = schema.arguments()[i].alias_info();
    const auto& actualValue = node->inputs().at(i);

    // Skip if there's no alias annotation
    if (!formal) {
      continue;
    }

    // If this type cannot alias, continue. Can occur with a VarType schema
    if (!isMutableTypeInternal(actualValue)) {
      continue;
    }

    // Do sanity checks on the alias annotation
    TORCH_INTERNAL_ASSERT(
        formal->containedTypes().size() <= 1,
        "Composite types for alias analysis not yet supported");
    TORCH_INTERNAL_ASSERT(
        !formal->isWildcardBefore(),
        "Doesn't make sense for a input value to begin as a wildcard");
    // This is a special case where we have alias info before [] but not after,
    // such as `Tensor(a!)[]`
    if (formal->containedTypes().size() == 1 && formal->beforeSets().empty()) {
      // Use the first containedType in alias info.
      formal = &(formal->containedTypes()[0]);
    }

    const auto& formalAlias = formal->beforeSet();

    // skip if we've already bound this alias
    if (formalToActual.count(formalAlias) != 0) {
      continue;
    }

    // Bind the formal to the actual
    formalToActual[formalAlias] = actualValue;

    // Record writes
    if (formal->isWrite()) {
      registerWrite(actualValue, node);
    }

    // Now deal with sets after the '->'
    if (formal->isWildcardAfter()) {
      TORCH_INTERNAL_ASSERT(
          formal->afterSets().size() == 1,
          "If the after set contains a wildcard, "
          "there should be no other alias sets specified.");
      setWildcard(actualValue);
    } else {
      // We don't understand anything else in the after yet, so assert there's
      // been no change.
      TORCH_INTERNAL_ASSERT(formal->beforeSets() == formal->afterSets());
    }
  }

  // Use the formal-actual mapping to give aliases to the outputs
  for (const auto i : c10::irange(schema.returns().size())) {
    const auto actual = node->outputs().at(i);
    const at::AliasInfo* formal = schema.returns()[i].alias_info();
    if (!formal) {
      // This is a fresh tensor
      giveFreshAlias(actual);
      continue;
    }

    // If this type cannot alias, continue. Can occur with a VarType schema
    if (!isMutableType(actual)) {
      continue;
    }

    TORCH_INTERNAL_ASSERT(
        formal->containedTypes().size() <= 1,
        "Composite types for alias analysis not yet supported");
    TORCH_INTERNAL_ASSERT(formal->beforeSets() == formal->afterSets());
    if (formal->containedTypes().size() == 1 && formal->beforeSets().empty()) {
      // Use the first containedType in alias info.
      formal = &(formal->containedTypes()[0]);
    }
    if (formal->isWildcardBefore()) {
      TORCH_INTERNAL_ASSERT(
          formal->beforeSets().size() == 1,
          "If an output is a wildcard, "
          "there should be no other alias sets specified.");
      setWildcard(actual);
      continue;
    }

    bool inputs_has_alias = false;
    for (const auto& formalAlias : formal->beforeSets()) {
      if (formalToActual.count(formalAlias)) {
        inputs_has_alias = true;
        auto toAlias = formalToActual.at(formalAlias);
        makePointerTo(actual, toAlias);
      }
    }
    // If all the alias annotation that we encounter weren't in the inputs:
    //   e.g. foo(Tensor(a) self) -> Tensor(b)
    //   or foo(Tensor(a) self) -> Tensor(b|c)
    // Otherwise it is the form of a|fresh, which we can ignore, taking the
    // conservative assumption that the output must alias `a`, e.g
    //   aten::cuda(Tensor(a) self) -> Tensor(a|fresh)
    if (!inputs_has_alias && formal->beforeSets().size()) {
      giveFreshAlias(actual);
    }

    // Record writes
    if (formal->isWrite()) {
      registerWrite(actual, node);
    }
  }
}

// Register the fact that `n` writes to `v`.
void AliasDb::registerWrite(const Value* v, Node* n, bool writeToContained) {
  if (!isMutableTypeInternal(v)) {
    // don't need to register a write if the value isn't mutable
    return;
  }
  if (writeToContained) {
    writeRegistry_->registerWriteToAllContained(v, n);
  } else {
    writeRegistry_->registerWrite(v, n);
  }
}

void AliasDb::analyzeIf(Node* node) {
  // For if statements, the alias set of an output is the union of the
  // alias sets generated by the if and else block
  const auto trueBlock = node->blocks().at(0);
  const auto falseBlock = node->blocks().at(1);
  analyze(trueBlock);
  analyze(falseBlock);

  for (const auto i : c10::irange(node->outputs().size())) {
    const auto nodeOutput = node->outputs()[i];

    const auto trueOutput = trueBlock->outputs().at(i);
    const auto falseOutput = falseBlock->outputs().at(i);

    makePointerTo(nodeOutput, trueOutput);
    makePointerTo(nodeOutput, falseOutput);
  }
}

void AliasDb::analyzeLoop(Node* node) {
  const auto bodyBlock = node->blocks().at(0);
  const auto loopCarriedInputs = node->inputs().slice(2); // skip max, cond
  const auto blockInputs = bodyBlock->inputs().slice(1); // skip trip
  const auto blockOutputs = bodyBlock->outputs().slice(1); // skip trip
  TORCH_INTERNAL_ASSERT(loopCarriedInputs.size() == blockInputs.size());
  TORCH_INTERNAL_ASSERT(blockOutputs.size() == node->outputs().size());

  // Run alias analysis on the loop body, iterating until the block output
  // alias info converges. Copy node input aliases to block input
  mapAliases(blockInputs, loopCarriedInputs);

  // Populate block output alias info by analyzing the body
  analyze(bodyBlock);

  // Copy the alias info from the block output to the node output
  mapAliases(node->outputs(), blockOutputs);
}

void AliasDb::analyzeGradOf(Node* node) {
  const auto grad_of_block = node->blocks().at(0);
  analyze(grad_of_block);
  mapAliases(node->outputs(), grad_of_block->outputs());
}

void AliasDb::analyzeSubgraph(Node* node, std::shared_ptr<Graph> subgraph) {
  const auto subgraphBlock = subgraph->block();
  // CallFunction nodes have an extra first parameter
  if (node->kind() == prim::CallFunction) {
    mapAliases(subgraphBlock->inputs(), node->inputs().slice(1));
  } else {
    mapAliases(subgraphBlock->inputs(), node->inputs());
  }

  analyze(subgraphBlock);

  // Note: the subgraph outputs and node outputs are NOT NECESSARILY the
  // same length. Autodifferentiation maybe capture additional outputs in the
  // subgraph block.
  TORCH_INTERNAL_ASSERT(
      subgraphBlock->outputs().size() >= node->outputs().size());
  for (size_t i = 0; i < node->outputs().size(); i++) {
    makePointerTo(node->outputs()[i], subgraphBlock->outputs()[i]);
  }
}

void AliasDb::analyzeSubgraph(Node* node) {
  const auto subgraph = node->g(attr::Subgraph);
  return analyzeSubgraph(node, subgraph);
}
// For nodes that generate a fresh value from nothing
void AliasDb::analyzeCreator(Node* node) {
  for (Value* output : node->outputs()) {
    giveFreshAlias(output);
  }
}

// For nodes that extract values from a composite type. Right now, this just
// gives up and creates wildcards for everything.
void AliasDb::analyzeExtractor(Node* node) {
  for (const auto output : node->outputs()) {
    setWildcard(output);
  }
}

// For torch.chunk(), all returned tensors may alias the input tensor
void AliasDb::analyzeChunk(Node* node) {
  for (auto output : node->outputs()) {
    makePointerTo(output, node->input());
  }
}

void AliasDb::analyzeFork(Node* node) {
  for (const auto input : node->inputs()) {
    setWildcard(input);
  }

  // Give the future that the fork emits a fresh value
  for (const auto output : node->outputs()) {
    giveFreshAlias(output);
  }
}

void AliasDb::analyzeWait(Node* node) {
  TORCH_INTERNAL_ASSERT(node->kind() == aten::wait);
  for (const auto output : node->outputs()) {
    setWildcard(output);
  }
  // the forked subgraph that `wait` is waiting on may write to any of its
  // inputs. We don't have a reliable way of recovering the fork inputs, so
  // for safety we just register a write to every wildcard.
  writeRegistry_->registerWriteToAllWildcards(node);
}

void AliasDb::analyzeRpcAsync(Node* node) {
  for (const auto input : node->inputs()) {
    setWildcard(input);
  }

  // Give the future that the rpc_async emits a fresh value
  for (const auto output : node->outputs()) {
    giveFreshAlias(output);
  }
}

namespace {
c10::optional<bool> getConstantBooleanInput(
    Node* node,
    const std::string& inputName) {
  TORCH_INTERNAL_ASSERT(
      node->hasNamedInput(inputName), inputName + " input is expected");
  auto value = node->namedInput(inputName);
  TORCH_INTERNAL_ASSERT(
      value->type() == BoolType::get(),
      inputName + "training input is expected to be a bool");
  return constant_as<bool>(value);
}
} // namespace

// custom behavior for batch_norm because (a!)? annotations currently
// aren't supported, and because behavior differs depending on the value of
// training
void AliasDb::analyzeBatchNorm(Node* node) {
  // we invoking freezing for inference, so we assume training will be folded to
  // a constant false to avoid needing to invoke freezing multiple times in
  // order to make batch norm weights constant
  for (Value* output : node->outputs()) {
    giveFreshAlias(output);
  }

  if (isFrozen_) {
    return;
  }

  auto isTraining = getConstantBooleanInput(node, "training");

  if (!isTraining.has_value() || *isTraining) {
    TORCH_INTERNAL_ASSERT(
        node->hasNamedInput("running_mean"), "running_mean input is expected");
    auto runningMean = node->namedInput("running_mean");
    TORCH_INTERNAL_ASSERT(
        node->hasNamedInput("running_var"), "running_var input is expected");
    auto runningVar = node->namedInput("running_var");

    registerWrite(runningMean, node);
    registerWrite(runningVar, node);
  }
}

// custom behavior for instance_norm, because (a!)? annotations currently
// aren't supported, and because behavior differs depending on the value of
// use_input_stats
void AliasDb::analyzeInstanceNorm(Node* node) {
  for (Value* output : node->outputs()) {
    giveFreshAlias(output);
  }

  auto useInputStats = getConstantBooleanInput(node, "use_input_stats");

  if (!useInputStats.has_value() || *useInputStats) {
    TORCH_INTERNAL_ASSERT(
        node->hasNamedInput("running_mean"), "running_mean input is expected");
    auto runningMean = node->namedInput("running_mean");
    TORCH_INTERNAL_ASSERT(
        node->hasNamedInput("running_var"), "running_var input is expected");
    auto runningVar = node->namedInput("running_var");

    registerWrite(runningMean, node);
    registerWrite(runningVar, node);
  }
}

// SetAttr: writes to the `self` field
void AliasDb::analyzeSetAttr(Node* node) {
  const auto self = node->inputs().at(0);
  TORCH_INTERNAL_ASSERT(self->type()->kind() == TypeKind::ClassType);
  registerWrite(self, node);
  // Also the value being set must become a wildcard.
  const auto newValue = node->inputs().at(1);
  setWildcard(newValue);
}

// Used for anything where we do not have accurate alias summaries
// may write to any input and produce wildcards
void AliasDb::analyzeConservative(Node* node) {
  for (const auto input : node->inputs()) {
    if (!isMutableTypeInternal(input)) {
      continue;
    }
    registerWrite(input, node, /*writeToContained=*/true);
    setWildcard(input);
  }

  for (const auto output : node->outputs()) {
    setWildcard(output);
  }
}

bool AliasDb::functionalNonEscapingListUse(const Use& use) const {
  Node* n = use.user;
  size_t offset = use.offset;
  Value* container = n->inputs().at(offset);

  // only consider aten op uses of lists
  if (!container->type()->cast<ListType>()) {
    return false;
  }

  /*
  in the general case, we consider any Value that enters another container as
  entering the heap, and thus aliasing all other heap values of the same type.
  the advantage of this approach are:
  - there are many composite list/container ops that would be tricky to
  schematize if we did something more complicated
  - limits the size of the AliasDb, because a container of size 10 only contains
  1 memory dag element instead of 10
  - we do not need to worry about adding contained elements to the wildcard set
  when a container escapes the graph.
  The downside of this approach is we are unable to handle the common case of a
  list constructed and passed into an aten op. Here, optimize for a set of
  common ops where the output does not alias the list or the list elements
  */

  // only used in output of graph - no further uses,
  // so there will be no use of it where the contained element leaks
  if (use.user->kind() == prim::Return) {
    return use.user->owningBlock() == graph_->block();
  }

  switch (use.user->kind()) {
    case aten::cat:
    case aten::broadcast_tensors:
    case aten::stack:
    case aten::vstack:
    case aten::hstack:
    case aten::dstack:
      return true;
  }
  auto op = use.user->maybeOperator();
  if (op && op->aliasAnalysisKind() == AliasAnalysisKind::PURE_FUNCTION) {
    return true;
  }
  return false;
}

bool AliasDb::functionalNonEscapingTupleUse(const Use& use) const {
  Node* n = use.user;
  size_t offset = use.offset;
  Value* container = n->inputs().at(offset);
  if (!container->type()->cast<TupleType>()) {
    return false;
  }
  // TODO(T97387453): Cover more ops that do not let escape tuples' elements.
  bool in_return_outputs = use.user->kind() == prim::Return;
  bool not_in_nested_subgraph = use.user->owningBlock() == graph_->block();
  return in_return_outputs && not_in_nested_subgraph;
}

// List or dict or tuple construct: create an aliasing element for the actual
// container, then mark all inputs as wildcards, since they've gone inside the
// container. Then, add the wildcard sets of appropriate type to the contained
// elements of the container.
void AliasDb::analyzeContainerConstruct(Node* node) {
  TORCH_INTERNAL_ASSERT(
      node->kind() == prim::ListConstruct ||
      node->kind() == prim::DictConstruct ||
      node->kind() == prim::TupleConstruct);

  // tuples which contain immutable types are immutable
  if (!isMutableTypeInternal(node->output())) {
    return;
  }

  TORCH_INTERNAL_ASSERT(node->outputs().size() == 1);
  auto container = node->output();

  // optimization:
  // if a list is only used once in an aten op, and the op output
  // doesn't alias the input, then we can add all inputs to the list's
  // contained elements instead of the wildcard set.
  if (container->uses().size() == 1 &&
      (functionalNonEscapingListUse(container->uses().at(0)) ||
       functionalNonEscapingTupleUse(container->uses().at(0)))) {
    giveFreshAlias(container, false);
    for (Value* v : node->inputs()) {
      addToContainedElements(v, container);
    }
    return;
  }

  giveFreshAlias(container);
  auto container_elem = elementMap_.at(container);
  for (auto input : node->inputs()) {
    auto maybe_wildcard_elem = setWildcard(input);
    if (maybe_wildcard_elem) {
      memoryDAGBuilder_->addToContainedElements(
          *maybe_wildcard_elem, container_elem);
    }
  }
}

// BroadcastingChunk: all inputs are broadcasted, and then individually chunked.
// This is an intermediate node used only in the graph fuser.
void AliasDb::analyzeBroadcastingChunk(Node* node) {
  auto inputs = node->inputs();
  auto outputs = node->outputs();
  auto nchunks = node->i(attr::chunks);
  for (const auto index : c10::irange(inputs.size())) {
    // Each inputs[i] is aliased by exactly `nchunks` distinct output tensors:
    // inputs[i] produces chunks outputs[i * nchunks + k] for k in [0..nchunks)
    auto output_begin = outputs.begin() + index * nchunks;
    for (auto it = output_begin; it != output_begin + nchunks; ++it) {
      makePointerTo(*it, inputs.at(index));
    }
  }
}

bool AliasDb::nonAliasingValue(const Value* elem) const {
  // these are values which can point to aliasing types in the graph,
  // as with a None value pointing to an optional if node output,
  // but will never alias themselves
  return elem->mustBeNone() || elem->node()->kind() == prim::Uninitialized;
}

// Register the fact that `from` is a pointer to `to`
void AliasDb::makePointerTo(const Value* from, const Value* to) {
  if (nonAliasingValue(from) || nonAliasingValue(to)) {
    // if either value is guaranteed to be non-aliasing, we do not need to
    // connect the two elements. however, it is invariant that aliasing types
    // that are not wildcards have a memory dag element, so we create one if
    // needed
    giveFreshAlias(from);
    giveFreshAlias(to);
    return;
  }

  // The contained types of immutable type containers (`Optional`,
  // `Tuple`, `Future`, and `Union`) are unified, so these types can be
  // mutable or immutable and point to a type which is mutable or
  // immutable. `Any` is mutable but can point to an immutable type
  // through refinement
  if (isMutableTypeInternal(from) != isMutableTypeInternal(to)) {
    return;
  }
  // both immutable
  if (!isMutableTypeInternal(from)) {
    return;
  }
  if (from == to) {
    return;
  }

  // At this point, we are dealing with two mutable types
  auto from_el = getOrCreateElement(from);
  auto to_el = getOrCreateElement(to);

  memoryDAGBuilder_->makePointerTo(from_el, to_el);
}

void AliasDb::addToContainedElements(
    const Value* inner,
    const Value* container) {
  if (!isMutableTypeInternal(inner)) {
    return;
  }

  auto inner_el = getOrCreateElement(inner);
  auto cont_el = getOrCreateElement(container);

  memoryDAGBuilder_->addToContainedElements(inner_el, cont_el);
}

bool AliasDb::mayAlias(const Value* a, const Value* b) const {
  if (!isMutableTypeInternal(a) || !isMutableTypeInternal(b)) {
    return false;
  }

  return memoryDAG_->mayAlias(elementMap_.at(a), elementMap_.at(b));
}

bool AliasDb::mayAlias(const ValueSet& a, const ValueSet& b) const {
  if (a.empty() || b.empty()) {
    return false;
  }

  // Record all memory locations from group `a`
  MemoryLocations aMemLocs;
  for (const auto value : a) {
    auto it = elementMap_.find(value);
    if (it != elementMap_.end()) {
      aMemLocs |= memoryDAG_->getMemoryLocations(it->second);
    }
  }

  // If any of group `b`s memory locations overlap, return true.
  for (const auto value : b) {
    auto it = elementMap_.find(value);
    if (it != elementMap_.end()) {
      if (aMemLocs.intersects(memoryDAG_->getMemoryLocations(it->second))) {
        return true;
      }
    }
  }
  // No overlap, so group `a` and `b` do not share a memory location
  return false;
}

bool AliasDb::mayContainAlias(Value* a, Value* b) const {
  if (!isMutableTypeInternal(a) || !isMutableTypeInternal(b)) {
    return false;
  }
  return memoryDAG_->mayContainAlias(elementMap_.at(a), elementMap_.at(b));
}

std::vector<Element*> AliasDb::getElements(at::ArrayRef<Value*> vs) const {
  std::vector<Element*> elements;
  for (const auto& val : vs) {
    if (isMutableTypeInternal(val)) {
      elements.push_back(elementMap_.at(val));
    }
  }
  return elements;
}

bool AliasDb::mayContainAlias(
    const at::ArrayRef<Value*> a,
    const at::ArrayRef<Value*> b) const {
  auto a_elems = getElements(a);
  return a_elems.size() == 0
      ? false
      : memoryDAG_->mayContainAlias(a_elems, getElements(b));
}

bool AliasDb::mayContainAlias(Value* a, const at::ArrayRef<Value*> b) const {
  if (!isMutableTypeInternal(a)) {
    return false;
  }
  auto b_elems = getElements(b);
  return b_elems.size() == 0
      ? false
      : memoryDAG_->mayContainAlias(elementMap_.at(a), b_elems);
}

// Make each value in the `from` list point to its partner in the `to` list
void AliasDb::mapAliases(at::ArrayRef<Value*> from, at::ArrayRef<Value*> to) {
  TORCH_INTERNAL_ASSERT(to.size() == from.size());
  for (const auto i : c10::irange(to.size())) {
    makePointerTo(from[i], to[i]);
  }
}

// Should only be called from create_functional_graphs.
// The asserts are to guard against unintentional use.
// FIXME refactor aliasdb construction to be more robust to mutation so this
// hack isn't necessary.
void AliasDb::createValue(const Value* value) {
  TORCH_INTERNAL_ASSERT(isMutableTypeInternal(value->type()));
  auto new_elem = memoryDAG_->unsafeMakeFreshValue(value);
  elementMap_[value] = new_elem;
}

void AliasDb::giveFreshAlias(
    const Value* value,
    bool add_wildcard_to_contained_elems) {
  auto maybe_mut_types = mapTypeToAliasTypeSetPtr(value->type());
  if (!maybe_mut_types) {
    return;
  }

  if (elementMap_.count(value)) {
    // Inside a loop, we may have given a fresh alias to this value already, so
    // skip
    return;
  }

  auto new_elem = memoryDAGBuilder_->makeFreshValue(value);
  elementMap_[value] = new_elem;
  if (add_wildcard_to_contained_elems) {
    if (maybe_mut_types->size() > 1) {
      pointUnionTypeElementToAllContainedTypes(new_elem, *maybe_mut_types);
    } else {
      addContainedTypesToFreshElement(new_elem, *maybe_mut_types);
    }
  }
}

Element* AliasDb::getOrCreateElement(const Value* value) {
  if (!elementMap_.count(value)) {
    giveFreshAlias(value);
  }
  return elementMap_.at(value);
}

void AliasDb::replaceWithNewValue(Value* existing, Value* new_value) {
  TORCH_INTERNAL_ASSERT(
      *unshapedType(existing->type()) == *unshapedType(new_value->type()),
      "Types must be strictly equal if you are replacing aliasing information. ",
      "Got existing: '",
      existing->type()->repr_str(),
      "', new_value: '",
      new_value->type()->repr_str(),
      "'");
  if (!isMutableTypeInternal(existing)) {
    return;
  }
  auto existing_elem = elementMap_.at(existing);
  elementMap_[new_value] = existing_elem;
  elementMap_.erase(existing);
  existing_elem->values = {new_value};
}

void AliasDb::copyValue(Value* from, Value* to) {
  TORCH_INTERNAL_ASSERT(
      *unshapedType(from->type()) == *unshapedType(to->type()),
      "Types must be strictly equal if you are copying aliasing information. ",
      "Got from: '",
      from->type()->repr_str(),
      "', to: '",
      to->type()->repr_str(),
      "'");
  if (!isMutableTypeInternal(to)) {
    return;
  }
  auto origElem = elementMap_.at(from);
  elementMap_[to] = origElem;
  origElem->values.insert(to);
}

bool AliasDb::moveAfterTopologicallyValid(Node* n, Node* movePoint) {
  return tryMove(n, movePoint, MoveSide::AFTER, /*dryRun=*/false);
}

bool AliasDb::couldMoveAfterTopologically(Node* n, Node* movePoint) {
  return tryMove(n, movePoint, MoveSide::AFTER, /*dryRun=*/true);
}

bool AliasDb::moveBeforeTopologicallyValid(Node* n, Node* movePoint) {
  // We have to distinguish the move side (instead of just moving after
  // n->prev()). Consider the following example:
  // If the dependency graph looks like
  //   n -> movePoint -> o
  // then moveBefore(o) will end up with
  //   n, o, movePoint
  // but moveAfter(n) will return false.
  return tryMove(n, movePoint, MoveSide::BEFORE, /*dryRun=*/false);
}

bool AliasDb::couldMoveBeforeTopologically(Node* n, Node* movePoint) {
  return tryMove(n, movePoint, MoveSide::BEFORE, /*dryRun=*/true);
}

bool AliasDb::hasWriters(const at::ArrayRef<Value*>& values) const {
  return std::any_of(values.begin(), values.end(), [&](Value* value) {
    return hasWriters(value);
  });
}

bool AliasDb::escapesScope(const at::ArrayRef<Value*>& vs) const {
  return mayContainAlias(graph_->inputs(), vs) ||
      mayContainAlias(graph_->outputs(), vs) || mayAliasWildcard(vs);
}

// Correctness conditions:
// no values in either set can have writers, and values in both sets
// cannot escape the current graph scope. Values can escape the current scope
// by aliasing a graph output or input, or by aliasing the wildcard set.
bool AliasDb::safeToChangeAliasingRelationship(
    const at::ArrayRef<Value*>& a,
    const at::ArrayRef<Value*>& b) const {
  if (hasWriters(a) || hasWriters(b)) {
    return false;
  }

  return !(escapesScope(a) && escapesScope(b));
}

// Helper for topologically-safe node moves. See `tryMove()` for details.
class AliasDb::WorkingSet {
 public:
  explicit WorkingSet(Node* mover, const AliasDb& aliasDb) : aliasDb_(aliasDb) {
    mover_ = mover;
    for (const auto user : getUsersSameBlock(mover_)) {
      moverUsers_.insert(user);
    }
    moverWrites_ |= aliasDb_.getWrites(mover_);
    moverReads_ |= aliasDb_.getReads(mover_);
  }

  // Add `n` to the working set
  void add(Node* n) {
    nodes_.push_back(n);
    node_to_index_[n] = nodes_.size() - 1;
    for (const auto user : getUsersSameBlock(n)) {
      users_.insert(user);
    }

    writes_ |= aliasDb_.getWrites(n);
    reads_ |= aliasDb_.getReads(n);
  }

  void eraseMover() {
    mover_ = nullptr;
    moverWrites_.clear();
    moverReads_.clear();
    moverUsers_.clear();
  }

  const std::vector<Node*>& dependentNodes() {
    return nodes_;
  }

  // Does the working set depend on `n`?
  bool dependsOn(Node* n) const {
    if (!mover_ && nodes_.empty()) {
      return false;
    }

    return hasDataDependency(n) || hasMutabilityDependency(n);
  }

 private:
  bool hasDataDependency(Node* n) const {
    if (!mover_ && nodes_.empty()) {
      return false;
    }
    const Node* pivot = mover_ ? mover_ : nodes_.front();
    if (n->isAfter(pivot)) {
      return producesFor(n);
    } else {
      return consumesFrom(n);
    }
  }

  bool hasMutabilityDependency(Node* n) const {
    // Check that `n` does not write to anything used by the working set
    const auto& nWrites = aliasDb_.getWrites(n);
    if (reads_.intersects(nWrites)) {
      return true;
    }
    if (mover_ && moverReads_.intersects(nWrites)) {
      return true;
    }

    // Check that the working set doesn't write to anything that `n` uses.
    const auto& nReads = aliasDb_.getReads(n);
    if (writes_.intersects(nReads)) {
      return true;
    }
    if (mover_ && moverWrites_.intersects(nReads)) {
      return true;
    }
    return false;
  }

  // Does the working set produce any values consumed by `n`?
  bool producesFor(Node* n) const {
    // This equivalent to asking: does the total use-set of all the nodes in the
    // working set include `n`?
    if (mover_ && moverUsers_.count(n)) {
      return true;
    }
    return users_.count(n) != 0;
  }

  // Does the working set consume any values produced by `n`?
  bool consumesFrom(Node* n) const {
    const auto users = getUsersSameBlock(n);

    if (mover_ && users.count(mover_)) {
      return true;
    }
    return std::any_of(users.begin(), users.end(), [&](Node* user) {
      return node_to_index_.find(user) != node_to_index_.end();
    });
  }

  // Get all users of outputs of `n`, in the same block as `n`.
  // This means if there is an `if` node that uses an output of `n` in some
  // inner sub-block, we will consider the whole `if` node a user of `n`.
  std::unordered_set<Node*> getUsersSameBlock(Node* n) const {
    std::unordered_set<Node*> users;
    for (const auto output : n->outputs()) {
      for (const auto& use : output->uses()) {
        if (auto sameBlock = findSameBlock(use.user, n)) {
          users.insert(sameBlock);
        }
      }
    }
    return users;
  }

  // Traverse `target`'s blockchain upward until we find a node that shares a
  // block with `n`.
  //
  // If one can't be found (say, because `n` is an inner block and target is
  // outside), then return nullptr. Since we can only reorder nodes within a
  // block, `target` would be irrelevant.
  static Node* findSameBlock(Node* target, Node* n) {
    TORCH_INTERNAL_ASSERT(target->owningGraph() == n->owningGraph());
    if (target->owningBlock() == n->owningBlock()) {
      return target;
    } else {
      // This user is in a sub-block. Traverse the blockchain upward until
      // we arrive at a node that shares a block with `this`
      auto curNode = target;
      while (curNode->owningBlock() != n->owningBlock()) {
        curNode = curNode->owningBlock()->owningNode();
        if (curNode == nullptr) {
          return curNode;
        }
      }
      return curNode;
    }
  }

  const AliasDb& aliasDb_;
  std::vector<Node*> nodes_;
  // Extra data structure for nodes for faster look up
  // Since the tryMove method is used a lot, we want to
  // make it as fast as possible.
  std::unordered_map<Node*, int64_t> node_to_index_;

  // Mover dependencies. We track these separately since we may erase the mover
  // from the working set.
  Node* mover_;
  MemoryLocations moverWrites_;
  MemoryLocations moverReads_;
  std::unordered_set<Node*> moverUsers_;

  // users => # of working set nodes it uses
  std::unordered_set<Node*> users_;
  // Values written to by the working set => number of nodes writing to value
  MemoryLocations writes_;
  MemoryLocations reads_;
};

// Try to move `toMove` before/after `movePoint` while preserving value
// dependencies. Returns false iff such a move could not be made.
//
// If `dryRun` is set, don't actually execute the move, just check if the move
// is possible
//
// The basic approach is: have a "working set" that we are moving forward, one
// node at a time. When we can't move past a node (because it depends on the
// working set), then add it to the working set and keep moving until we hit
// `moveAfter`.
bool AliasDb::tryMove(
    Node* toMove,
    Node* movePoint,
    MoveSide moveSide,
    bool dryRun) {
  if (toMove->owningBlock() != movePoint->owningBlock()) {
    return false;
  }
  if (toMove == movePoint) {
    return true;
  }

  // 1. Move from `this` toward movePoint, building up the working set of
  // dependencies
  WorkingSet workingSet(toMove, *this);

  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  int direction;
  if (toMove->isAfter(movePoint)) {
    direction = kPrevDirection;
  } else {
    direction = kNextDirection;
  }

  auto curNode = toMove->next_in_graph[direction];

  bool toMoveIsOnMoveSide =
      (moveSide == MoveSide::BEFORE && toMove->isBefore(movePoint)) ||
      (moveSide == MoveSide::AFTER && toMove->isAfter(movePoint));

  if (toMoveIsOnMoveSide && curNode == movePoint) {
    return true;
  }

  // it is never valid to move reorder a node with side effects
  if (toMove->hasSideEffects() ||
      (!toMoveIsOnMoveSide && movePoint->hasSideEffects())) {
    return false;
  }

  // Move forward one node at a time
  while (curNode != movePoint) {
    // never valid to reorder around a node with side effects
    if (curNode->hasSideEffects()) {
      return false;
    }

    if (workingSet.dependsOn(curNode)) {
      // If we can't move past this node, add it to the working set
      workingSet.add(curNode);
    }
    curNode = curNode->next_in_graph[direction];
  }

  // 2. Decide whether we can move it all to `movePoint`.

  // Say we are moving directly before movePoint and `toMove` starts before
  // movePoint in the graph. The move looks like
  //
  //  `toMove`            `toMove`         |
  //  <dependencies>  ->  `movePoint`      | `toMove` and deps are split
  //  `movePoint`         <dependencies>   |
  //
  // Contrast with the case where `toMove` starts AFTER movePoint:
  //
  //  `movePoint`           <dependencies>   |
  //  <dependencies>  ->    `toMove`         | `toMove` and deps are together
  //  `toMove`              `movePoint`      |
  //
  // In the first case, we need to split `this` off from its dependencies, so we
  // can move the dependencies below `movePoint` and keep `toMove` above.
  const bool splitToMoveAndDeps =
      (moveSide == MoveSide::BEFORE && toMove->isBefore(movePoint)) ||
      (moveSide == MoveSide::AFTER && toMove->isAfter(movePoint));

  if (splitToMoveAndDeps) {
    // remove `this` from dependencies to be moved past `movePoint`
    workingSet.eraseMover();
  }

  // Check if we can move the working set past the move point
  if (workingSet.dependsOn(movePoint)) {
    // if we can't, then there are intermediate dependencies between the
    // `this` and `movePoint`, so we can't do the move
    return false;
  }

  if (dryRun) {
    return true;
  }

  // 3. Execute the move
  TORCH_INTERNAL_ASSERT(curNode == movePoint);
  if (splitToMoveAndDeps) {
    // Move `toMove`
    move(toMove, movePoint, moveSide);

    // Then move all of its dependencies on the other side of `movePoint`
    const auto reversed =
        moveSide == MoveSide::BEFORE ? MoveSide::AFTER : MoveSide::BEFORE;
    for (auto n : workingSet.dependentNodes()) {
      move(n, curNode, reversed);
      curNode = n;
    }
  } else {
    // Just append/prepend everything to `movePoint`
    move(toMove, curNode, moveSide);
    curNode = toMove;
    for (auto n : workingSet.dependentNodes()) {
      move(n, curNode, moveSide);
      curNode = n;
    }
  }
  return true;
}

// Helper function so we can generalize `tryMove`
void AliasDb::move(Node* toMove, Node* movePoint, MoveSide moveSide) {
  switch (moveSide) {
    case MoveSide::BEFORE:
      toMove->moveBefore(movePoint);
      break;
    case MoveSide::AFTER:
      toMove->moveAfter(movePoint);
      break;
  }
}

bool AliasDb::writesToWildcard(Node* n) const {
  if (!writeIndex_->count(n)) {
    return false;
  }
  const auto& writes = writeIndex_->at(n);

  // Are any of these memoryLocs a wildcard element?
  for (const auto& pr : wildcardIndex_) {
    const auto wildcardElement = pr.second;
    if (writes.test(wildcardElement->index)) {
      return true;
    }
  }
  return false;
}

bool AliasDb::mayAliasWildcard(const Value* v) const {
  if (auto e = getWildcard(v->type())) {
    return memoryDAG_->mayAlias(elementMap_.at(v), e);
  }
  // There were no wildcards of this type, so return false.
  return false;
}

bool AliasDb::mayAliasWildcard(const at::ArrayRef<Value*> vs) const {
  return std::any_of(
      vs.begin(), vs.end(), [&](Value* v) { return mayAliasWildcard(v); });
}

c10::optional<Element*> AliasDb::tryGetOrCreateWildcard(const TypePtr& type) {
  auto maybe_mut_types = mapTypeToAliasTypeSetPtr(type);
  if (!maybe_mut_types) {
    return c10::nullopt;
  }
  auto mut_type = toSingleType(*maybe_mut_types);
  auto existing_wildcard = wildcardIndex_.find(*mut_type);
  if (existing_wildcard != wildcardIndex_.end()) {
    return existing_wildcard->second;
  }

  auto wildcard_elem = memoryDAGBuilder_->makeFreshValue(nullptr);
  wildcardIndex_.emplace(*std::move(mut_type), wildcard_elem);
  if (maybe_mut_types->size() > 1) {
    pointUnionTypeElementToAllContainedTypes(wildcard_elem, *maybe_mut_types);
  } else {
    addContainedTypesToFreshElement(wildcard_elem, *maybe_mut_types);
  }
  return wildcard_elem;
}

void AliasDb::pointUnionTypeElementToAllContainedTypes(
    Element* container_elem,
    const AliasTypeSet& mut_types) {
  for (const auto& mut_type : mut_types) {
    auto maybe_elem = tryGetOrCreateWildcard(mut_type);
    if (maybe_elem) {
      TORCH_INTERNAL_ASSERT(*maybe_elem != container_elem);
      memoryDAGBuilder_->makePointerTo(container_elem, *maybe_elem);
    }
  }
}

void AliasDb::addContainedTypesToFreshElement(
    Element* container_elem,
    const AliasTypeSet& mut_types) {
  for (const auto& mut_type : mut_types) {
    for (const auto& contained : mut_type->containedTypes()) {
      auto maybe_elem = tryGetOrCreateWildcard(contained);
      if (maybe_elem) {
        memoryDAGBuilder_->addToContainedElements(*maybe_elem, container_elem);
      }
    }
  }
}

// Search the wildcard index for an element that corresponds to the given type.
// Const version returns nullptr
Element* AliasDb::getWildcard(const TypePtr& type) const {
  auto maybe_mut_types = mapTypeToAliasTypeSetPtr(type);
  if (!maybe_mut_types) {
    return {};
  }
  if (maybe_mut_types->size() > 1) {
    auto union_type = UnionType::create(*maybe_mut_types);
    // Get a <TypePtr, Element*> pair where the TypePtr is this Union
    // type and the Element is the corresponding Wildcard
    auto maybe_union_pair = wildcardIndex_.find(union_type);
    if (maybe_union_pair != wildcardIndex_.end()) {
      return (*maybe_union_pair).second;
    }
  } else {
    // Get a <TypePtr, Element*> pair where the TypePtr is the given
    // type and the Element is the corresponding Wildcard
    auto type_pair = wildcardIndex_.find((*maybe_mut_types)[0]);
    if (type_pair != wildcardIndex_.end()) {
      return type_pair->second;
    }
  }
  return {};
}

// Register `v` as a wildcard value.
c10::optional<Element*> AliasDb::setWildcard(const Value* v) {
  c10::optional<Element*> maybe_wildcardElement =
      tryGetOrCreateWildcard(v->type());
  if (!maybe_wildcardElement) {
    return c10::nullopt;
  }
  // Ensure that we create a corresponding Element for `v` still, as it is an
  // invariant that all mutable values have an Element
  getOrCreateElement(v);
  wildcards_.insert(v);
  return *maybe_wildcardElement;
}

void AliasDb::buildWrittenToLocationsIndex() {
  MemoryLocations ret;
  for (const auto& pr : *writeIndex_) {
    const auto& writtenLocs = pr.second;
    ret |= writtenLocs;
  }
  writtenToLocationsIndex_ = ret;
}

void Lint(const AliasDb* db) {
  bool failed = false;

  std::stringstream ss;
  // Every mutable value in the system has a corresponding element.
  for (const auto& v : db->graph_->all_values) {
    if (!db->isMutableTypeInternal(v)) {
      continue;
    }
    auto it = db->elementMap_.find(v);
    if (it == db->elementMap_.end()) {
      failed = true;
      ss << "Value %" << v->debugName() << " of type " << v->type()->repr_str()
         << " wasn't found in the element map.\n"
         << "It was defined in " << *v->node();
    }
  }
  TORCH_INTERNAL_ASSERT(!failed, ss.str());

  // Two checks that we want to add but can't until the mutation API is more
  // fully developed.
  // - Every mutable value in the aliasdb belongs to the graph
  // - All container values have contained elements
}

} // namespace jit
} // namespace torch