1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
|
#include <torch/csrc/jit/ir/alias_analysis.h>
#include <ATen/core/interned_strings.h>
#include <c10/util/flat_hash_map.h>
#include <c10/util/irange.h>
#include <torch/csrc/jit/api/function_impl.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/inliner.h>
#include <torch/csrc/jit/passes/utils/subgraph_utils.h>
#include <torch/csrc/jit/runtime/operator.h>
#include <torch/csrc/utils/memory.h>
#include <fstream>
namespace torch {
namespace jit {
namespace {
c10::MaybeOwned<TypePtr> toSingleType(const AliasTypeSet& mut_types) {
return mut_types.size() == 1
? c10::MaybeOwned<TypePtr>::borrowed(mut_types[0])
: c10::MaybeOwned<TypePtr>::owned(c10::UnionType::create(mut_types));
}
// This class determines whether a type is mutable, and, if so, it maps
// the type to its "mutable equivalent" (see definition in
// `mapTypeToAliasTypeSet`). It uses a cache of TypePtrs to speed up these
// type lookups
class MutableTypePtrHelper {
public:
explicit MutableTypePtrHelper(
ska::flat_hash_map<TypePtr, AliasTypeSet>* mutable_type_cache)
: mutable_type_cache_(mutable_type_cache) {}
// Map any mutable type to a type such that all other types which the
// mutable type can alias will be mapped to the same type. For
// example, calling this method on `Optional[List[int]]` should be
// the same as calling this method on `List[int]`.
//
// Rules:
// - If the type is not mutable, return `nullopt`
// - If the type is a `Tuple`, that means that it's an immutable
// object that can itself contain mutable objects. We want to make
// sure that the mutable objects are correctly aliased, so we
// remove the immutable objects. (For example,
// `Tuple[int, Tensor]` would become `Tuple[Tensor]`, while
// `Tuple[int, str]` would be returned as `nullopt`.) This is a
// convenience that makes it easy to check if the `Tuple`
// contains only immutable objects, though it's not technically
// necessary
// - For any Tensor type (including Tensor types that are part of
// a larger container, e.g. `List[Tensor]`), return the
// "unshaped" version of that Tensor. An "unshaped" Tensor is a
// Tensor with shape information removed. For example, a Tensor
// of dimension 4 would map to the same type as a Tensor of
// dimension 1. This allows us to treat all subclasses of Tensor
// as a single, homogenous "Tensor" type.
c10::optional<AliasTypeSet> mapTypeToAliasTypeSet(const TypePtr& type) {
if (mutable_type_cache_) {
const AliasTypeSet* result = mapTypeToBorrowedAliasTypeSet(type);
if (result) {
return *result;
}
}
return mapTypeToAliasTypeSetImpl(type);
}
const AliasTypeSet* mapTypeToBorrowedAliasTypeSet(const TypePtr& type) {
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(mutable_type_cache_ != nullptr);
auto maybe_type_mapping = mutable_type_cache_->find(type);
if (maybe_type_mapping != mutable_type_cache_->end()) {
return &maybe_type_mapping->second;
}
auto mutable_types = mapTypeToAliasTypeSetImpl(type);
if (mutable_types) {
auto it =
mutable_type_cache_->emplace(type, std::move(*mutable_types)).first;
return &it->second;
} else {
return nullptr;
}
}
private:
c10::optional<AliasTypeSet> mapTypeToAliasTypeSetImpl(const TypePtr& type) {
switch (type->kind()) {
case TypeKind::ListType:
case TypeKind::DictType:
case TypeKind::ClassType:
case TypeKind::TensorType:
// TODO: Look up cached contained types. this is kind of tricky
// because a `List[Optional[T]]` should still be
// `List[Optional[Unshaped(T)]]`, but
// `mapTypeToAliasTypeSet(Optional[T])` should be `T`
return AliasTypeSet{unshapedType(type)};
case TypeKind::UnionType: {
AliasTypeSet mutable_types;
for (const TypePtr& inner :
type->expectRef<UnionType>().containedTypes()) {
if (auto maybe_inner_types = mapTypeToAliasTypeSet(inner)) {
mutable_types.insert(
mutable_types.end(),
(*maybe_inner_types).begin(),
(*maybe_inner_types).end());
}
}
if (mutable_types.size() == 0) {
return c10::nullopt;
}
return mutable_types;
}
case TypeKind::OptionalType: {
auto inner = type->castRaw<OptionalType>()->getElementType();
return mapTypeToAliasTypeSet(inner);
}
case TypeKind::AnyType:
return {AliasTypeSet{type}};
case TypeKind::FutureType: {
if (auto maybe_mut_types = mapTypeToAliasTypeSet(
type->castRaw<FutureType>()->getElementType())) {
return {AliasTypeSet{
FutureType::create(*toSingleType(*maybe_mut_types))}};
}
return c10::nullopt;
}
case TypeKind::TupleType: {
std::vector<TypePtr> mutable_types;
for (const TypePtr& inner : type->expectRef<TupleType>().elements()) {
if (auto maybe_inner_types = mapTypeToAliasTypeSet(inner)) {
mutable_types.insert(
mutable_types.end(),
(*maybe_inner_types).begin(),
(*maybe_inner_types).end());
}
}
if (mutable_types.size() == 0) {
return c10::nullopt;
}
return {AliasTypeSet{TupleType::create(mutable_types)}};
}
default:
return c10::nullopt;
}
}
ska::flat_hash_map<TypePtr, AliasTypeSet>* mutable_type_cache_;
};
bool isMutableTypeImpl(
const TypePtr& type,
ska::flat_hash_map<TypePtr, AliasTypeSet>* mutable_type_cache) {
// Check common cases to avoid recursively constructing type in
// `mapTypeToAliasTypeSetPtrImpl`
auto kind = type->kind();
if (kind == TypeKind::TensorType || kind == TypeKind::ListType ||
kind == TypeKind::ClassType || kind == TypeKind::DictType) {
return true;
}
MutableTypePtrHelper helper(mutable_type_cache);
if (mutable_type_cache) {
return helper.mapTypeToBorrowedAliasTypeSet(type) != nullptr;
} else {
return helper.mapTypeToAliasTypeSet(type).has_value();
}
}
} // namespace
// Static `isMutableType` does not use cache of type -> mutable type equivalent
bool AliasDb::isMutableType(const TypePtr& type) {
return isMutableTypeImpl(type, nullptr);
}
bool AliasDb::isMutableType(const Value* v) {
return isMutableType(v->type());
}
// Make use of type -> mutable cache
bool AliasDb::isMutableTypeInternal(const TypePtr& type) const {
return isMutableTypeImpl(type, &mapped_mutable_types_);
}
bool AliasDb::isMutableTypeInternal(const Value* v) const {
return isMutableTypeInternal(v->type());
}
const AliasTypeSet* AliasDb::mapTypeToAliasTypeSetPtr(
const TypePtr& type) const {
MutableTypePtrHelper helper(&mapped_mutable_types_);
return helper.mapTypeToBorrowedAliasTypeSet(type);
}
AliasDb::~AliasDb() = default;
// Structure used during analysis to keep track of all writes at a high
// level. When the analysis is completed, this will be used to construct
// a more efficient WriteIndex
struct AliasDb::WriteRegistry {
void registerWrite(const Value* v, Node* n) {
writes_[n].emplace_back(v);
}
void registerWriteToAllContained(const Value* v, Node* n) {
containedWrites_[n].emplace_back(v);
}
void registerWriteToAllWildcards(Node* n) {
writesToAllWildcards_.insert(n);
}
std::unordered_map<Node*, std::vector<const Value*>> writes_;
std::unordered_map<Node*, std::vector<const Value*>> containedWrites_;
std::unordered_set<Node*> writesToAllWildcards_;
};
AliasDb::AliasDb(
std::shared_ptr<Graph> graph,
bool isFrozen,
bool descendFunctionCalls)
: graph_(std::move(graph)),
isFrozen_(isFrozen),
descend_function_calls_(descendFunctionCalls),
memoryDAGBuilder_(std::make_unique<MemoryDAGBuilder>()),
writeRegistry_(std::make_unique<AliasDb::WriteRegistry>()) {
analyze(graph_);
memoryDAG_ = std::make_unique<MemoryDAG>(std::move(memoryDAGBuilder_));
memoryDAGBuilder_ = nullptr; // to make further access a hard error
memoryDAG_->setWildcards(
wildcards_, elementMap_, [&](const Value* v) -> Element* {
return getWildcard(v->type());
});
// Now we build up the various write indices based on information in the write
// registry that we populated during analysis
// Initialize the write index
writeIndex_ = TWriteIndex();
auto& writeIndex = *writeIndex_; // to make operator[] less ugly
// Build the write index
for (const auto& write : writeRegistry_->writes_) {
Node* node = write.first;
const std::vector<const Value*> writtenValues = write.second;
for (const Value* writtenValue : writtenValues) {
auto it = elementMap_.find(writtenValue);
TORCH_INTERNAL_ASSERT(
it != elementMap_.end(), "Tried to write to value not in MemoryDAG");
const auto& writtenMemoryLocations =
memoryDAG_->getMemoryLocations(it->second);
writeIndex[node] |= writtenMemoryLocations;
}
}
for (const auto& write : writeRegistry_->containedWrites_) {
Node* node = write.first;
const std::vector<const Value*>& writtenValues = write.second;
for (const Value* writtenValue : writtenValues) {
auto elem = elementMap_.at(writtenValue);
MemoryLocations writtenMemoryLocations;
memoryDAG_->collectAllContainedMemoryLocations(
elem, writtenMemoryLocations);
writeIndex[node] |= writtenMemoryLocations;
}
}
for (const auto& write : writeRegistry_->writesToAllWildcards_) {
for (const auto& pr : wildcardIndex_) {
writeIndex[write].set(pr.second->index);
}
}
// Now that we've built the write index, we can null out the WriteRegistry to
// make future access an error. In this way we prevent the index from getting
// out of sync (since we have no way of registering new writes)
writeRegistry_ = nullptr;
// Initialize the write cache
buildWrittenToLocationsIndex();
GRAPH_DEBUG(toString());
}
bool AliasDb::isMutable(Node* n) const {
ValueSet vs;
for (const auto input : n->inputs()) {
vs.insert(input);
}
return writesToAlias(n, vs);
}
bool AliasDb::hasInputWriters(const Node* n) const {
for (const auto input : n->inputs()) {
if (hasWriters(input)) {
return true;
}
}
return false;
}
bool AliasDb::hasOutputWriters(const Node* n) const {
for (const auto output : n->outputs()) {
if (hasWriters(output)) {
return true;
}
}
return false;
}
bool AliasDb::hasWriters(const Node* n) const {
return hasInputWriters(n) || hasOutputWriters(n);
}
bool AliasDb::hasWriters(const Value* v) const {
if (v->mustBeNone()) {
return false;
}
auto it = elementMap_.find(v);
if (it == elementMap_.end()) {
return false;
}
const auto& el = it->second;
return writtenToLocationsIndex_->intersects(
memoryDAG_->getMemoryLocations(el));
}
void AliasDb::getWritesImpl(Node* n, MemoryLocations& ret) const {
if (writeIndex_->count(n)) {
const auto& writes = writeIndex_->at(n);
ret |= writes;
}
for (auto block : n->blocks()) {
for (auto node : block->nodes()) {
getWritesImpl(node, ret);
}
}
}
// Does `n` write to an alias of one of the values in `vs`?
bool AliasDb::writesToAlias(Node* n, const ValueSet& vs) const {
const auto writtenTo = getWrites(n);
if (writtenTo.empty()) {
return false;
}
MemoryLocations locs;
for (const auto v : vs) {
auto it = elementMap_.find(v);
if (it != elementMap_.end()) {
const auto& vlocs = memoryDAG_->getMemoryLocations(it->second);
if (writtenTo.intersects(vlocs)) {
return true;
}
}
}
return false;
}
MemoryLocations AliasDb::getWrites(Node* n) const {
MemoryLocations writes;
getWritesImpl(n, writes);
return writes;
}
void AliasDb::getReadsImpl(Node* n, MemoryLocations& ret) const {
for (const auto input : n->inputs()) {
auto it = elementMap_.find(input);
if (it != elementMap_.end()) {
auto el = it->second;
// Add all memory locations this element may alias and their contained
// elements
memoryDAG_->collectAllContainedMemoryLocations(el, ret);
}
}
for (auto block : n->blocks()) {
for (auto node : block->nodes()) {
getReadsImpl(node, ret);
}
}
}
MemoryLocations AliasDb::getReads(Node* n) const {
MemoryLocations reads;
getReadsImpl(n, reads);
return reads;
}
std::string AliasDb::getElementName(const Element* e) const {
if (e->values.empty()) {
// Not the most efficient way, but given the fact there are
// not too many types and even fewer of them will end up in
// `wildcardIndex_`, we should be fine with a linear search
// each time we hit a Wildcard leaf
for (const auto& ent : wildcardIndex_) {
if (ent.second == e) {
return std::string("WILDCARD for type ") + ent.first->str();
}
}
return "WILDCARD";
} else {
std::ostringstream ss;
if (e->values.size() == 1) {
ss << "%" << (*e->values.begin())->debugName();
return ss.str();
}
ss << "(";
for (const Value* v : e->values) {
ss << "%" << v->debugName() << ", ";
}
ss << ")";
return ss.str();
}
}
void AliasDb::dump() const {
std::cout << toString();
}
std::string AliasDb::toString() const {
std::stringstream ss{};
ss << "\n===1. GRAPH===\n";
ss << graph_->toString();
ss << "\n===2. ALIAS DB===\n";
for (const auto& ptrPair : elementMap_) {
const auto element = ptrPair.second;
int ct = 0;
if (!element->pointsTo.empty()) {
ss << getElementName(element) << " points to: ";
for (const auto pointedTo : element->pointsTo) {
if (ct > 0) {
ss << ", ";
}
++ct;
ss << getElementName(memoryDAG_->fromIndex(pointedTo));
}
ss << "\n";
}
ct = 0;
if (!element->containedElements.empty()) {
ss << getElementName(element) << " contains: ";
for (const auto contained : element->containedElements) {
ss << getElementName(memoryDAG_->fromIndex(contained));
if (ct > 0) {
ss << ", ";
}
++ct;
}
ss << "\n";
}
}
ss << "\n===3. Writes===\n";
for (const auto& pr : *writeIndex_) {
const auto node = pr.first;
const auto& values = pr.second;
ss << *node;
ss << " ";
for (const auto value : values) {
ss << getElementName(memoryDAG_->fromIndex(value)) << ", ";
}
ss << "\n";
}
ss << "\n";
return ss.str();
}
bool AliasDb::dumpToGraphvizFile(const char* filename) const {
std::ofstream dot_file(filename);
if (!dot_file.good()) {
std::cout << "Failed to create Graphviz file: '" << filename << "'\n";
return false;
}
dot_file << toGraphviz();
return true;
}
std::string AliasDb::toGraphviz() const {
std::stringstream dot;
// Local helper to generate a graphviz-friendly name encoding
// See also AliasDb::getElementName()
const auto name = [this](const Element* e) -> std::string {
if (e->values.empty()) {
for (const auto& ent : wildcardIndex_) {
if (ent.second == e) {
return std::string("\"WILDCARD for ") + ent.first->str() + "\"";
}
}
return "\"WILDCARD\"";
} else {
std::ostringstream ss;
if (e->values.size() == 1) {
ss << "\"\\%" << (*e->values.begin())->debugName() << "\"";
return ss.str();
}
ss << "\"(";
for (const Value* v : e->values) {
ss << "\\%" << v->debugName() << ", ";
}
ss << ")\"";
return ss.str();
}
};
// Include the textual representation for reference
dot << "/*\n";
dot << toString();
dot << "*/\n";
dot << "digraph alias_db {\n"
<< " rankdir=LR\n"
<< " node [shape=rect, color=gray];\n"
<< " edge [color=black];\n";
for (const auto& ptrPair : elementMap_) {
const auto element = ptrPair.second;
if (!element->pointsTo.empty()) {
for (const auto pointedTo : element->pointsTo) {
dot << " " << name(element) << " -> "
<< name(memoryDAG_->fromIndex(pointedTo)) << "\n";
}
}
if (!element->containedElements.empty()) {
for (const auto contained : element->containedElements) {
dot << " " << name(element) << " -> "
<< name(memoryDAG_->fromIndex(contained))
<< " [style=dashed, color=blue]\n";
}
}
}
dot << "}\n";
return dot.str();
}
void AliasDb::analyze(const std::shared_ptr<Graph>& graph) {
for (auto input : graph->inputs()) {
setWildcard(input);
}
analyze(graph->block());
}
void AliasDb::analyze(Block* block) {
for (auto node : block->nodes()) {
analyze(node);
}
}
void AliasDb::analyze(Node* node) {
analyzeImpl(node);
}
// Returns true if analysis was run using
// the registered analyzer.
bool AliasDb::tryRegisteredAnalysis(Node* node) {
const Operator& op = node->getOperator();
auto analysis = op.aliasAnalysisKind();
if (AliasAnalysisKind::PURE_FUNCTION == analysis) {
analyzeCreator(node);
return true;
}
return false;
}
// The basic strategy is:
// 1. Retrieve alias information for every input.
// 2. Use the node's schema's alias annotations to propgagate alias/write
// information to the outputs. For unschematized nodes, a special analyzer
// will have to be handwritten.
void AliasDb::analyzeImpl(Node* node) {
auto op = node->maybeOperator();
const bool hasSpecialCase = aliasAnalysisHasSpecialCaseFor(node->kind());
if (op) {
const auto analysis = op->aliasAnalysisKind();
const bool registeredAsSpecialCase =
analysis == AliasAnalysisKind::INTERNAL_SPECIAL_CASE;
if (C10_UNLIKELY(registeredAsSpecialCase && !hasSpecialCase)) {
TORCH_INTERNAL_ASSERT(
false,
"Op ",
node->kind().toDisplayString(),
" is registered with AliasAnalysisKind::INTERNAL_SPECIAL_CASE but doesn't have a special case.");
} else if (C10_UNLIKELY(!registeredAsSpecialCase && hasSpecialCase)) {
TORCH_INTERNAL_ASSERT(
false,
"Op ",
node->kind().toDisplayString(),
" has a special case and should be registered with AliasAnalysisKind::INTERNAL_SPECIAL_CASE but is registered with ",
c10::toString(analysis));
}
} else {
if (!hasSpecialCase) {
std::ostringstream oss;
for (const auto input : node->inputs()) {
oss << input->type()->str() << ", ";
}
oss << "\n\nCandidates:";
const auto& candidates = getAllOperatorsFor(node->kind());
for (const auto& candidate : candidates) {
oss << "\n\t" << candidate->schema();
}
TORCH_INTERNAL_ASSERT(
0,
"We don't have an op for ",
node->kind().toDisplayString(),
" but it isn't a special case. ",
"Argument types: ",
oss.str());
}
}
// These nodes are not schematized, so we need to handle them specially
switch (node->kind()) {
case prim::If:
return analyzeIf(node);
case prim::Loop:
return analyzeLoop(node);
case prim::FusionGroup:
case prim::CudaFusionGroup:
case prim::oneDNNFusionGroup:
case prim::FunctionalGraph:
case prim::DifferentiableGraph:
case prim::FallbackGraph:
return analyzeSubgraph(node);
case prim::fork:
return analyzeFork(node);
case aten::wait:
return analyzeWait(node);
case prim::rpc_async:
case prim::rpc_sync:
case prim::rpc_remote:
return analyzeRpcAsync(node);
case aten::batch_norm:
return analyzeBatchNorm(node);
case aten::instance_norm:
return analyzeInstanceNorm(node);
case prim::GradOf:
return analyzeGradOf(node);
case prim::BroadcastMKLDNNTensors: {
makePointerTo(node->outputs().at(0), node->inputs().at(0));
makePointerTo(node->outputs().at(1), node->inputs().at(1));
return;
}
// TODO: think more about TensorExpr alias correctness
case prim::TensorExprGroup:
case prim::TensorExprDynamicGroup:
case prim::MKLDNNGroup:
case prim::ConstantMKLDNNTensor:
case prim::StaticSubgraph:
case prim::Constant:
case prim::AutogradZero:
case prim::AutogradAdd:
case prim::FusedConcat:
case prim::MMTreeReduce:
case prim::MMBatchSide:
case prim::BroadcastSizes:
case prim::ChunkSizes:
// this should never be seen outside of initial compilation
// but because of some dependencies with closure invoking alias
// db needs to be handled here
case prim::EmptyListLiteral:
case prim::Closure:
case prim::CreateObject:
case prim::tolist:
case prim::Uninitialized:
return analyzeCreator(node);
case prim::TupleConstruct:
case prim::DictConstruct:
case prim::ListConstruct:
return analyzeContainerConstruct(node);
case prim::TupleUnpack:
case prim::TupleIndex:
case prim::TupleSlice:
case prim::ListUnpack:
case prim::PythonOp:
case prim::GetAttr:
if (isFrozen_ && node->kind() == prim::GetAttr) {
auto& ty = node->input()->type();
if (ty->expectRef<ClassType>().is_module()) {
return analyzeCreator(node);
}
}
return analyzeExtractor(node);
case prim::unchecked_cast:
return makePointerTo(node->output(), node->input());
case prim::ConstantChunk:
return analyzeChunk(node);
case prim::BroadcastingChunk:
return analyzeBroadcastingChunk(node);
case prim::SetAttr:
return analyzeSetAttr(node);
case prim::profile_ivalue:
case prim::profile:
makePointerTo(node->output(), node->inputs().at(0));
return;
case prim::TypeCheck:
case prim::RequiresGradCheck: {
auto num_inputs = node->inputs().size();
for (const auto i : c10::irange(num_inputs)) {
makePointerTo(node->outputs().at(i), node->inputs().at(i));
}
return;
}
case prim::BailOut:
TORCH_INTERNAL_ASSERT(
node->inputs().at(0)->node()->kind() == prim::BailoutTemplate);
makePointerTo(node->output(), node->inputs().at(1));
return;
case prim::Guard:
makePointerTo(node->output(), node->inputs().at(0));
return;
case prim::CallFunction:
case prim::CallMethod: {
// TODO: this can be improved with summarizes of what the function does
// for now we assume the worst
if (!descend_function_calls_) {
return analyzeConservative(node);
}
auto g = tryToGraphFunction(node);
if (!g) {
return analyzeConservative(node);
}
// this is an unoptimized path - we copy the subgraph for each function
// call past the first - so we do not generally enable the recursive
// analysis. use cases for fine-grained alias analysis without inlining
// are very uncommon
auto graph = g->optimized_graph();
// alias analysis will use Value* as mappings for information,
// so for each analysis of a particular function call we need a new graph
// for all copies made, store them for duration of analysis so we do not
// run into lifetime issues with the graph
std::vector<std::shared_ptr<Graph>>& graphs =
function_call_copies_[graph.get()];
if (graphs.size() == 0) {
graphs.push_back(graph);
analyzeSubgraph(node, graph);
} else {
auto copied_graph = graph->copy();
graphs.push_back(copied_graph);
analyzeSubgraph(node, copied_graph);
}
return;
}
case prim::Enter:
case prim::Exit:
// TODO: this can be improved with summarizes of what the function does
// for now we assume the worst
// NB: update safeToChangeAliasingRelationship if changed
return analyzeConservative(node);
case prim::Print:
case prim::isinstance:
// These ops do nothing
return;
default:
if (tryRegisteredAnalysis(node)) {
return;
}
}
TORCH_INTERNAL_ASSERT(op, "We should have an op schema if we get to here");
const AliasAnalysisKind analysis = op->aliasAnalysisKind();
TORCH_INTERNAL_ASSERT(
analysis != AliasAnalysisKind::INTERNAL_SPECIAL_CASE &&
!aliasAnalysisHasSpecialCaseFor(node->kind()),
"Special cases should be handled already if we're here.");
if (node->kind().is_aten() || node->kind().is_prim() ||
node->kind().is_cuda()) {
// TODO There is nothing in the system that relies on aten:: and prim::
// ops using AliasAnalysisKind::FROM_SCHEMA or
// AliasAnalysisKind::INTERNAL_SPECIAL_CASE, but this is the intended
// behavior for all current ops and a good error check. We can consider
// lifting this constraint later if we have a use case for it.
TORCH_INTERNAL_ASSERT(
analysis == AliasAnalysisKind::FROM_SCHEMA ||
analysis == AliasAnalysisKind::CONSERVATIVE,
"aten:: and prim:: operators should use AliasAnalysisKind::FROM_SCHEMA or "
"AliasAnalysisKind::CONSERVATIVE(if really necessary), but ",
node->kind().toDisplayString(),
" doesn't. Note: Ideally, prim:: operators actually shouldn't have a schema ",
"and then use AliasAnalysisKind::INTERNAL_SPECIAL_CASE instead.");
}
if (analysis == AliasAnalysisKind::CONSERVATIVE) {
// TODO A previous implementation of alias analysis always accessed
// node->schema , which cause the schema caches in the Node class to be
// filled for the full graph. Unfortunately, our JIT passes started relying
// on that, so we need to keep doing this. Details: in
// caffe2/torch/onnx/utils.py, _jit_pass_onnx is called on an invalid JIT
// graph because we called _jit_pass_erase_number_types right before and
// ints are now Tensors instead. So if _jit_pass_onnx tries to look up
// operator schemas, it will crash. However, _jit_pass_constant_propagation,
// which is called before it, runs alias analysis and prefills the schema
// cache in the all Node instances so that _jit_pass_onnx doesn't look up
// operators to get the schemas anymore. We should fix this.
node->schema(); // fill the schema cache in the Node class
return analyzeConservative(node);
}
TORCH_INTERNAL_ASSERT(
analysis == AliasAnalysisKind::FROM_SCHEMA,
"AliasAnalysisKind::CONSERVATIVE/PURE_FUNCTION/INTERNAL_SPECIAL_CASE should already have been handled above");
const auto& schema = node->schema();
// Bind the schema's "formal" alias annotation to the actual values those
// schema arguments represent
std::unordered_map<Symbol, Value*> formalToActual;
for (const auto i : c10::irange(schema.arguments().size())) {
const at::AliasInfo* formal = schema.arguments()[i].alias_info();
const auto& actualValue = node->inputs().at(i);
// Skip if there's no alias annotation
if (!formal) {
continue;
}
// If this type cannot alias, continue. Can occur with a VarType schema
if (!isMutableTypeInternal(actualValue)) {
continue;
}
// Do sanity checks on the alias annotation
TORCH_INTERNAL_ASSERT(
formal->containedTypes().size() <= 1,
"Composite types for alias analysis not yet supported");
TORCH_INTERNAL_ASSERT(
!formal->isWildcardBefore(),
"Doesn't make sense for a input value to begin as a wildcard");
// This is a special case where we have alias info before [] but not after,
// such as `Tensor(a!)[]`
if (formal->containedTypes().size() == 1 && formal->beforeSets().empty()) {
// Use the first containedType in alias info.
formal = &(formal->containedTypes()[0]);
}
const auto& formalAlias = formal->beforeSet();
// skip if we've already bound this alias
if (formalToActual.count(formalAlias) != 0) {
continue;
}
// Bind the formal to the actual
formalToActual[formalAlias] = actualValue;
// Record writes
if (formal->isWrite()) {
registerWrite(actualValue, node);
}
// Now deal with sets after the '->'
if (formal->isWildcardAfter()) {
TORCH_INTERNAL_ASSERT(
formal->afterSets().size() == 1,
"If the after set contains a wildcard, "
"there should be no other alias sets specified.");
setWildcard(actualValue);
} else {
// We don't understand anything else in the after yet, so assert there's
// been no change.
TORCH_INTERNAL_ASSERT(formal->beforeSets() == formal->afterSets());
}
}
// Use the formal-actual mapping to give aliases to the outputs
for (const auto i : c10::irange(schema.returns().size())) {
const auto actual = node->outputs().at(i);
const at::AliasInfo* formal = schema.returns()[i].alias_info();
if (!formal) {
// This is a fresh tensor
giveFreshAlias(actual);
continue;
}
// If this type cannot alias, continue. Can occur with a VarType schema
if (!isMutableType(actual)) {
continue;
}
TORCH_INTERNAL_ASSERT(
formal->containedTypes().size() <= 1,
"Composite types for alias analysis not yet supported");
TORCH_INTERNAL_ASSERT(formal->beforeSets() == formal->afterSets());
if (formal->containedTypes().size() == 1 && formal->beforeSets().empty()) {
// Use the first containedType in alias info.
formal = &(formal->containedTypes()[0]);
}
if (formal->isWildcardBefore()) {
TORCH_INTERNAL_ASSERT(
formal->beforeSets().size() == 1,
"If an output is a wildcard, "
"there should be no other alias sets specified.");
setWildcard(actual);
continue;
}
bool inputs_has_alias = false;
for (const auto& formalAlias : formal->beforeSets()) {
if (formalToActual.count(formalAlias)) {
inputs_has_alias = true;
auto toAlias = formalToActual.at(formalAlias);
makePointerTo(actual, toAlias);
}
}
// If all the alias annotation that we encounter weren't in the inputs:
// e.g. foo(Tensor(a) self) -> Tensor(b)
// or foo(Tensor(a) self) -> Tensor(b|c)
// Otherwise it is the form of a|fresh, which we can ignore, taking the
// conservative assumption that the output must alias `a`, e.g
// aten::cuda(Tensor(a) self) -> Tensor(a|fresh)
if (!inputs_has_alias && formal->beforeSets().size()) {
giveFreshAlias(actual);
}
// Record writes
if (formal->isWrite()) {
registerWrite(actual, node);
}
}
}
// Register the fact that `n` writes to `v`.
void AliasDb::registerWrite(const Value* v, Node* n, bool writeToContained) {
if (!isMutableTypeInternal(v)) {
// don't need to register a write if the value isn't mutable
return;
}
if (writeToContained) {
writeRegistry_->registerWriteToAllContained(v, n);
} else {
writeRegistry_->registerWrite(v, n);
}
}
void AliasDb::analyzeIf(Node* node) {
// For if statements, the alias set of an output is the union of the
// alias sets generated by the if and else block
const auto trueBlock = node->blocks().at(0);
const auto falseBlock = node->blocks().at(1);
analyze(trueBlock);
analyze(falseBlock);
for (const auto i : c10::irange(node->outputs().size())) {
const auto nodeOutput = node->outputs()[i];
const auto trueOutput = trueBlock->outputs().at(i);
const auto falseOutput = falseBlock->outputs().at(i);
makePointerTo(nodeOutput, trueOutput);
makePointerTo(nodeOutput, falseOutput);
}
}
void AliasDb::analyzeLoop(Node* node) {
const auto bodyBlock = node->blocks().at(0);
const auto loopCarriedInputs = node->inputs().slice(2); // skip max, cond
const auto blockInputs = bodyBlock->inputs().slice(1); // skip trip
const auto blockOutputs = bodyBlock->outputs().slice(1); // skip trip
TORCH_INTERNAL_ASSERT(loopCarriedInputs.size() == blockInputs.size());
TORCH_INTERNAL_ASSERT(blockOutputs.size() == node->outputs().size());
// Run alias analysis on the loop body, iterating until the block output
// alias info converges. Copy node input aliases to block input
mapAliases(blockInputs, loopCarriedInputs);
// Populate block output alias info by analyzing the body
analyze(bodyBlock);
// Copy the alias info from the block output to the node output
mapAliases(node->outputs(), blockOutputs);
}
void AliasDb::analyzeGradOf(Node* node) {
const auto grad_of_block = node->blocks().at(0);
analyze(grad_of_block);
mapAliases(node->outputs(), grad_of_block->outputs());
}
void AliasDb::analyzeSubgraph(Node* node, std::shared_ptr<Graph> subgraph) {
const auto subgraphBlock = subgraph->block();
// CallFunction nodes have an extra first parameter
if (node->kind() == prim::CallFunction) {
mapAliases(subgraphBlock->inputs(), node->inputs().slice(1));
} else {
mapAliases(subgraphBlock->inputs(), node->inputs());
}
analyze(subgraphBlock);
// Note: the subgraph outputs and node outputs are NOT NECESSARILY the
// same length. Autodifferentiation maybe capture additional outputs in the
// subgraph block.
TORCH_INTERNAL_ASSERT(
subgraphBlock->outputs().size() >= node->outputs().size());
for (size_t i = 0; i < node->outputs().size(); i++) {
makePointerTo(node->outputs()[i], subgraphBlock->outputs()[i]);
}
}
void AliasDb::analyzeSubgraph(Node* node) {
const auto subgraph = node->g(attr::Subgraph);
return analyzeSubgraph(node, subgraph);
}
// For nodes that generate a fresh value from nothing
void AliasDb::analyzeCreator(Node* node) {
for (Value* output : node->outputs()) {
giveFreshAlias(output);
}
}
// For nodes that extract values from a composite type. Right now, this just
// gives up and creates wildcards for everything.
void AliasDb::analyzeExtractor(Node* node) {
for (const auto output : node->outputs()) {
setWildcard(output);
}
}
// For torch.chunk(), all returned tensors may alias the input tensor
void AliasDb::analyzeChunk(Node* node) {
for (auto output : node->outputs()) {
makePointerTo(output, node->input());
}
}
void AliasDb::analyzeFork(Node* node) {
for (const auto input : node->inputs()) {
setWildcard(input);
}
// Give the future that the fork emits a fresh value
for (const auto output : node->outputs()) {
giveFreshAlias(output);
}
}
void AliasDb::analyzeWait(Node* node) {
TORCH_INTERNAL_ASSERT(node->kind() == aten::wait);
for (const auto output : node->outputs()) {
setWildcard(output);
}
// the forked subgraph that `wait` is waiting on may write to any of its
// inputs. We don't have a reliable way of recovering the fork inputs, so
// for safety we just register a write to every wildcard.
writeRegistry_->registerWriteToAllWildcards(node);
}
void AliasDb::analyzeRpcAsync(Node* node) {
for (const auto input : node->inputs()) {
setWildcard(input);
}
// Give the future that the rpc_async emits a fresh value
for (const auto output : node->outputs()) {
giveFreshAlias(output);
}
}
namespace {
c10::optional<bool> getConstantBooleanInput(
Node* node,
const std::string& inputName) {
TORCH_INTERNAL_ASSERT(
node->hasNamedInput(inputName), inputName + " input is expected");
auto value = node->namedInput(inputName);
TORCH_INTERNAL_ASSERT(
value->type() == BoolType::get(),
inputName + "training input is expected to be a bool");
return constant_as<bool>(value);
}
} // namespace
// custom behavior for batch_norm because (a!)? annotations currently
// aren't supported, and because behavior differs depending on the value of
// training
void AliasDb::analyzeBatchNorm(Node* node) {
// we invoking freezing for inference, so we assume training will be folded to
// a constant false to avoid needing to invoke freezing multiple times in
// order to make batch norm weights constant
for (Value* output : node->outputs()) {
giveFreshAlias(output);
}
if (isFrozen_) {
return;
}
auto isTraining = getConstantBooleanInput(node, "training");
if (!isTraining.has_value() || *isTraining) {
TORCH_INTERNAL_ASSERT(
node->hasNamedInput("running_mean"), "running_mean input is expected");
auto runningMean = node->namedInput("running_mean");
TORCH_INTERNAL_ASSERT(
node->hasNamedInput("running_var"), "running_var input is expected");
auto runningVar = node->namedInput("running_var");
registerWrite(runningMean, node);
registerWrite(runningVar, node);
}
}
// custom behavior for instance_norm, because (a!)? annotations currently
// aren't supported, and because behavior differs depending on the value of
// use_input_stats
void AliasDb::analyzeInstanceNorm(Node* node) {
for (Value* output : node->outputs()) {
giveFreshAlias(output);
}
auto useInputStats = getConstantBooleanInput(node, "use_input_stats");
if (!useInputStats.has_value() || *useInputStats) {
TORCH_INTERNAL_ASSERT(
node->hasNamedInput("running_mean"), "running_mean input is expected");
auto runningMean = node->namedInput("running_mean");
TORCH_INTERNAL_ASSERT(
node->hasNamedInput("running_var"), "running_var input is expected");
auto runningVar = node->namedInput("running_var");
registerWrite(runningMean, node);
registerWrite(runningVar, node);
}
}
// SetAttr: writes to the `self` field
void AliasDb::analyzeSetAttr(Node* node) {
const auto self = node->inputs().at(0);
TORCH_INTERNAL_ASSERT(self->type()->kind() == TypeKind::ClassType);
registerWrite(self, node);
// Also the value being set must become a wildcard.
const auto newValue = node->inputs().at(1);
setWildcard(newValue);
}
// Used for anything where we do not have accurate alias summaries
// may write to any input and produce wildcards
void AliasDb::analyzeConservative(Node* node) {
for (const auto input : node->inputs()) {
if (!isMutableTypeInternal(input)) {
continue;
}
registerWrite(input, node, /*writeToContained=*/true);
setWildcard(input);
}
for (const auto output : node->outputs()) {
setWildcard(output);
}
}
bool AliasDb::functionalNonEscapingListUse(const Use& use) const {
Node* n = use.user;
size_t offset = use.offset;
Value* container = n->inputs().at(offset);
// only consider aten op uses of lists
if (!container->type()->cast<ListType>()) {
return false;
}
/*
in the general case, we consider any Value that enters another container as
entering the heap, and thus aliasing all other heap values of the same type.
the advantage of this approach are:
- there are many composite list/container ops that would be tricky to
schematize if we did something more complicated
- limits the size of the AliasDb, because a container of size 10 only contains
1 memory dag element instead of 10
- we do not need to worry about adding contained elements to the wildcard set
when a container escapes the graph.
The downside of this approach is we are unable to handle the common case of a
list constructed and passed into an aten op. Here, optimize for a set of
common ops where the output does not alias the list or the list elements
*/
// only used in output of graph - no further uses,
// so there will be no use of it where the contained element leaks
if (use.user->kind() == prim::Return) {
return use.user->owningBlock() == graph_->block();
}
switch (use.user->kind()) {
case aten::cat:
case aten::broadcast_tensors:
case aten::stack:
case aten::vstack:
case aten::hstack:
case aten::dstack:
return true;
}
auto op = use.user->maybeOperator();
if (op && op->aliasAnalysisKind() == AliasAnalysisKind::PURE_FUNCTION) {
return true;
}
return false;
}
bool AliasDb::functionalNonEscapingTupleUse(const Use& use) const {
Node* n = use.user;
size_t offset = use.offset;
Value* container = n->inputs().at(offset);
if (!container->type()->cast<TupleType>()) {
return false;
}
// TODO(T97387453): Cover more ops that do not let escape tuples' elements.
bool in_return_outputs = use.user->kind() == prim::Return;
bool not_in_nested_subgraph = use.user->owningBlock() == graph_->block();
return in_return_outputs && not_in_nested_subgraph;
}
// List or dict or tuple construct: create an aliasing element for the actual
// container, then mark all inputs as wildcards, since they've gone inside the
// container. Then, add the wildcard sets of appropriate type to the contained
// elements of the container.
void AliasDb::analyzeContainerConstruct(Node* node) {
TORCH_INTERNAL_ASSERT(
node->kind() == prim::ListConstruct ||
node->kind() == prim::DictConstruct ||
node->kind() == prim::TupleConstruct);
// tuples which contain immutable types are immutable
if (!isMutableTypeInternal(node->output())) {
return;
}
TORCH_INTERNAL_ASSERT(node->outputs().size() == 1);
auto container = node->output();
// optimization:
// if a list is only used once in an aten op, and the op output
// doesn't alias the input, then we can add all inputs to the list's
// contained elements instead of the wildcard set.
if (container->uses().size() == 1 &&
(functionalNonEscapingListUse(container->uses().at(0)) ||
functionalNonEscapingTupleUse(container->uses().at(0)))) {
giveFreshAlias(container, false);
for (Value* v : node->inputs()) {
addToContainedElements(v, container);
}
return;
}
giveFreshAlias(container);
auto container_elem = elementMap_.at(container);
for (auto input : node->inputs()) {
auto maybe_wildcard_elem = setWildcard(input);
if (maybe_wildcard_elem) {
memoryDAGBuilder_->addToContainedElements(
*maybe_wildcard_elem, container_elem);
}
}
}
// BroadcastingChunk: all inputs are broadcasted, and then individually chunked.
// This is an intermediate node used only in the graph fuser.
void AliasDb::analyzeBroadcastingChunk(Node* node) {
auto inputs = node->inputs();
auto outputs = node->outputs();
auto nchunks = node->i(attr::chunks);
for (const auto index : c10::irange(inputs.size())) {
// Each inputs[i] is aliased by exactly `nchunks` distinct output tensors:
// inputs[i] produces chunks outputs[i * nchunks + k] for k in [0..nchunks)
auto output_begin = outputs.begin() + index * nchunks;
for (auto it = output_begin; it != output_begin + nchunks; ++it) {
makePointerTo(*it, inputs.at(index));
}
}
}
bool AliasDb::nonAliasingValue(const Value* elem) const {
// these are values which can point to aliasing types in the graph,
// as with a None value pointing to an optional if node output,
// but will never alias themselves
return elem->mustBeNone() || elem->node()->kind() == prim::Uninitialized;
}
// Register the fact that `from` is a pointer to `to`
void AliasDb::makePointerTo(const Value* from, const Value* to) {
if (nonAliasingValue(from) || nonAliasingValue(to)) {
// if either value is guaranteed to be non-aliasing, we do not need to
// connect the two elements. however, it is invariant that aliasing types
// that are not wildcards have a memory dag element, so we create one if
// needed
giveFreshAlias(from);
giveFreshAlias(to);
return;
}
// The contained types of immutable type containers (`Optional`,
// `Tuple`, `Future`, and `Union`) are unified, so these types can be
// mutable or immutable and point to a type which is mutable or
// immutable. `Any` is mutable but can point to an immutable type
// through refinement
if (isMutableTypeInternal(from) != isMutableTypeInternal(to)) {
return;
}
// both immutable
if (!isMutableTypeInternal(from)) {
return;
}
if (from == to) {
return;
}
// At this point, we are dealing with two mutable types
auto from_el = getOrCreateElement(from);
auto to_el = getOrCreateElement(to);
memoryDAGBuilder_->makePointerTo(from_el, to_el);
}
void AliasDb::addToContainedElements(
const Value* inner,
const Value* container) {
if (!isMutableTypeInternal(inner)) {
return;
}
auto inner_el = getOrCreateElement(inner);
auto cont_el = getOrCreateElement(container);
memoryDAGBuilder_->addToContainedElements(inner_el, cont_el);
}
bool AliasDb::mayAlias(const Value* a, const Value* b) const {
if (!isMutableTypeInternal(a) || !isMutableTypeInternal(b)) {
return false;
}
return memoryDAG_->mayAlias(elementMap_.at(a), elementMap_.at(b));
}
bool AliasDb::mayAlias(const ValueSet& a, const ValueSet& b) const {
if (a.empty() || b.empty()) {
return false;
}
// Record all memory locations from group `a`
MemoryLocations aMemLocs;
for (const auto value : a) {
auto it = elementMap_.find(value);
if (it != elementMap_.end()) {
aMemLocs |= memoryDAG_->getMemoryLocations(it->second);
}
}
// If any of group `b`s memory locations overlap, return true.
for (const auto value : b) {
auto it = elementMap_.find(value);
if (it != elementMap_.end()) {
if (aMemLocs.intersects(memoryDAG_->getMemoryLocations(it->second))) {
return true;
}
}
}
// No overlap, so group `a` and `b` do not share a memory location
return false;
}
bool AliasDb::mayContainAlias(Value* a, Value* b) const {
if (!isMutableTypeInternal(a) || !isMutableTypeInternal(b)) {
return false;
}
return memoryDAG_->mayContainAlias(elementMap_.at(a), elementMap_.at(b));
}
std::vector<Element*> AliasDb::getElements(at::ArrayRef<Value*> vs) const {
std::vector<Element*> elements;
for (const auto& val : vs) {
if (isMutableTypeInternal(val)) {
elements.push_back(elementMap_.at(val));
}
}
return elements;
}
bool AliasDb::mayContainAlias(
const at::ArrayRef<Value*> a,
const at::ArrayRef<Value*> b) const {
auto a_elems = getElements(a);
return a_elems.size() == 0
? false
: memoryDAG_->mayContainAlias(a_elems, getElements(b));
}
bool AliasDb::mayContainAlias(Value* a, const at::ArrayRef<Value*> b) const {
if (!isMutableTypeInternal(a)) {
return false;
}
auto b_elems = getElements(b);
return b_elems.size() == 0
? false
: memoryDAG_->mayContainAlias(elementMap_.at(a), b_elems);
}
// Make each value in the `from` list point to its partner in the `to` list
void AliasDb::mapAliases(at::ArrayRef<Value*> from, at::ArrayRef<Value*> to) {
TORCH_INTERNAL_ASSERT(to.size() == from.size());
for (const auto i : c10::irange(to.size())) {
makePointerTo(from[i], to[i]);
}
}
// Should only be called from create_functional_graphs.
// The asserts are to guard against unintentional use.
// FIXME refactor aliasdb construction to be more robust to mutation so this
// hack isn't necessary.
void AliasDb::createValue(const Value* value) {
TORCH_INTERNAL_ASSERT(isMutableTypeInternal(value->type()));
auto new_elem = memoryDAG_->unsafeMakeFreshValue(value);
elementMap_[value] = new_elem;
}
void AliasDb::giveFreshAlias(
const Value* value,
bool add_wildcard_to_contained_elems) {
auto maybe_mut_types = mapTypeToAliasTypeSetPtr(value->type());
if (!maybe_mut_types) {
return;
}
if (elementMap_.count(value)) {
// Inside a loop, we may have given a fresh alias to this value already, so
// skip
return;
}
auto new_elem = memoryDAGBuilder_->makeFreshValue(value);
elementMap_[value] = new_elem;
if (add_wildcard_to_contained_elems) {
if (maybe_mut_types->size() > 1) {
pointUnionTypeElementToAllContainedTypes(new_elem, *maybe_mut_types);
} else {
addContainedTypesToFreshElement(new_elem, *maybe_mut_types);
}
}
}
Element* AliasDb::getOrCreateElement(const Value* value) {
if (!elementMap_.count(value)) {
giveFreshAlias(value);
}
return elementMap_.at(value);
}
void AliasDb::replaceWithNewValue(Value* existing, Value* new_value) {
TORCH_INTERNAL_ASSERT(
*unshapedType(existing->type()) == *unshapedType(new_value->type()),
"Types must be strictly equal if you are replacing aliasing information. ",
"Got existing: '",
existing->type()->repr_str(),
"', new_value: '",
new_value->type()->repr_str(),
"'");
if (!isMutableTypeInternal(existing)) {
return;
}
auto existing_elem = elementMap_.at(existing);
elementMap_[new_value] = existing_elem;
elementMap_.erase(existing);
existing_elem->values = {new_value};
}
void AliasDb::copyValue(Value* from, Value* to) {
TORCH_INTERNAL_ASSERT(
*unshapedType(from->type()) == *unshapedType(to->type()),
"Types must be strictly equal if you are copying aliasing information. ",
"Got from: '",
from->type()->repr_str(),
"', to: '",
to->type()->repr_str(),
"'");
if (!isMutableTypeInternal(to)) {
return;
}
auto origElem = elementMap_.at(from);
elementMap_[to] = origElem;
origElem->values.insert(to);
}
bool AliasDb::moveAfterTopologicallyValid(Node* n, Node* movePoint) {
return tryMove(n, movePoint, MoveSide::AFTER, /*dryRun=*/false);
}
bool AliasDb::couldMoveAfterTopologically(Node* n, Node* movePoint) {
return tryMove(n, movePoint, MoveSide::AFTER, /*dryRun=*/true);
}
bool AliasDb::moveBeforeTopologicallyValid(Node* n, Node* movePoint) {
// We have to distinguish the move side (instead of just moving after
// n->prev()). Consider the following example:
// If the dependency graph looks like
// n -> movePoint -> o
// then moveBefore(o) will end up with
// n, o, movePoint
// but moveAfter(n) will return false.
return tryMove(n, movePoint, MoveSide::BEFORE, /*dryRun=*/false);
}
bool AliasDb::couldMoveBeforeTopologically(Node* n, Node* movePoint) {
return tryMove(n, movePoint, MoveSide::BEFORE, /*dryRun=*/true);
}
bool AliasDb::hasWriters(const at::ArrayRef<Value*>& values) const {
return std::any_of(values.begin(), values.end(), [&](Value* value) {
return hasWriters(value);
});
}
bool AliasDb::escapesScope(const at::ArrayRef<Value*>& vs) const {
return mayContainAlias(graph_->inputs(), vs) ||
mayContainAlias(graph_->outputs(), vs) || mayAliasWildcard(vs);
}
// Correctness conditions:
// no values in either set can have writers, and values in both sets
// cannot escape the current graph scope. Values can escape the current scope
// by aliasing a graph output or input, or by aliasing the wildcard set.
bool AliasDb::safeToChangeAliasingRelationship(
const at::ArrayRef<Value*>& a,
const at::ArrayRef<Value*>& b) const {
if (hasWriters(a) || hasWriters(b)) {
return false;
}
return !(escapesScope(a) && escapesScope(b));
}
// Helper for topologically-safe node moves. See `tryMove()` for details.
class AliasDb::WorkingSet {
public:
explicit WorkingSet(Node* mover, const AliasDb& aliasDb) : aliasDb_(aliasDb) {
mover_ = mover;
for (const auto user : getUsersSameBlock(mover_)) {
moverUsers_.insert(user);
}
moverWrites_ |= aliasDb_.getWrites(mover_);
moverReads_ |= aliasDb_.getReads(mover_);
}
// Add `n` to the working set
void add(Node* n) {
nodes_.push_back(n);
node_to_index_[n] = nodes_.size() - 1;
for (const auto user : getUsersSameBlock(n)) {
users_.insert(user);
}
writes_ |= aliasDb_.getWrites(n);
reads_ |= aliasDb_.getReads(n);
}
void eraseMover() {
mover_ = nullptr;
moverWrites_.clear();
moverReads_.clear();
moverUsers_.clear();
}
const std::vector<Node*>& dependentNodes() {
return nodes_;
}
// Does the working set depend on `n`?
bool dependsOn(Node* n) const {
if (!mover_ && nodes_.empty()) {
return false;
}
return hasDataDependency(n) || hasMutabilityDependency(n);
}
private:
bool hasDataDependency(Node* n) const {
if (!mover_ && nodes_.empty()) {
return false;
}
const Node* pivot = mover_ ? mover_ : nodes_.front();
if (n->isAfter(pivot)) {
return producesFor(n);
} else {
return consumesFrom(n);
}
}
bool hasMutabilityDependency(Node* n) const {
// Check that `n` does not write to anything used by the working set
const auto& nWrites = aliasDb_.getWrites(n);
if (reads_.intersects(nWrites)) {
return true;
}
if (mover_ && moverReads_.intersects(nWrites)) {
return true;
}
// Check that the working set doesn't write to anything that `n` uses.
const auto& nReads = aliasDb_.getReads(n);
if (writes_.intersects(nReads)) {
return true;
}
if (mover_ && moverWrites_.intersects(nReads)) {
return true;
}
return false;
}
// Does the working set produce any values consumed by `n`?
bool producesFor(Node* n) const {
// This equivalent to asking: does the total use-set of all the nodes in the
// working set include `n`?
if (mover_ && moverUsers_.count(n)) {
return true;
}
return users_.count(n) != 0;
}
// Does the working set consume any values produced by `n`?
bool consumesFrom(Node* n) const {
const auto users = getUsersSameBlock(n);
if (mover_ && users.count(mover_)) {
return true;
}
return std::any_of(users.begin(), users.end(), [&](Node* user) {
return node_to_index_.find(user) != node_to_index_.end();
});
}
// Get all users of outputs of `n`, in the same block as `n`.
// This means if there is an `if` node that uses an output of `n` in some
// inner sub-block, we will consider the whole `if` node a user of `n`.
std::unordered_set<Node*> getUsersSameBlock(Node* n) const {
std::unordered_set<Node*> users;
for (const auto output : n->outputs()) {
for (const auto& use : output->uses()) {
if (auto sameBlock = findSameBlock(use.user, n)) {
users.insert(sameBlock);
}
}
}
return users;
}
// Traverse `target`'s blockchain upward until we find a node that shares a
// block with `n`.
//
// If one can't be found (say, because `n` is an inner block and target is
// outside), then return nullptr. Since we can only reorder nodes within a
// block, `target` would be irrelevant.
static Node* findSameBlock(Node* target, Node* n) {
TORCH_INTERNAL_ASSERT(target->owningGraph() == n->owningGraph());
if (target->owningBlock() == n->owningBlock()) {
return target;
} else {
// This user is in a sub-block. Traverse the blockchain upward until
// we arrive at a node that shares a block with `this`
auto curNode = target;
while (curNode->owningBlock() != n->owningBlock()) {
curNode = curNode->owningBlock()->owningNode();
if (curNode == nullptr) {
return curNode;
}
}
return curNode;
}
}
const AliasDb& aliasDb_;
std::vector<Node*> nodes_;
// Extra data structure for nodes for faster look up
// Since the tryMove method is used a lot, we want to
// make it as fast as possible.
std::unordered_map<Node*, int64_t> node_to_index_;
// Mover dependencies. We track these separately since we may erase the mover
// from the working set.
Node* mover_;
MemoryLocations moverWrites_;
MemoryLocations moverReads_;
std::unordered_set<Node*> moverUsers_;
// users => # of working set nodes it uses
std::unordered_set<Node*> users_;
// Values written to by the working set => number of nodes writing to value
MemoryLocations writes_;
MemoryLocations reads_;
};
// Try to move `toMove` before/after `movePoint` while preserving value
// dependencies. Returns false iff such a move could not be made.
//
// If `dryRun` is set, don't actually execute the move, just check if the move
// is possible
//
// The basic approach is: have a "working set" that we are moving forward, one
// node at a time. When we can't move past a node (because it depends on the
// working set), then add it to the working set and keep moving until we hit
// `moveAfter`.
bool AliasDb::tryMove(
Node* toMove,
Node* movePoint,
MoveSide moveSide,
bool dryRun) {
if (toMove->owningBlock() != movePoint->owningBlock()) {
return false;
}
if (toMove == movePoint) {
return true;
}
// 1. Move from `this` toward movePoint, building up the working set of
// dependencies
WorkingSet workingSet(toMove, *this);
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int direction;
if (toMove->isAfter(movePoint)) {
direction = kPrevDirection;
} else {
direction = kNextDirection;
}
auto curNode = toMove->next_in_graph[direction];
bool toMoveIsOnMoveSide =
(moveSide == MoveSide::BEFORE && toMove->isBefore(movePoint)) ||
(moveSide == MoveSide::AFTER && toMove->isAfter(movePoint));
if (toMoveIsOnMoveSide && curNode == movePoint) {
return true;
}
// it is never valid to move reorder a node with side effects
if (toMove->hasSideEffects() ||
(!toMoveIsOnMoveSide && movePoint->hasSideEffects())) {
return false;
}
// Move forward one node at a time
while (curNode != movePoint) {
// never valid to reorder around a node with side effects
if (curNode->hasSideEffects()) {
return false;
}
if (workingSet.dependsOn(curNode)) {
// If we can't move past this node, add it to the working set
workingSet.add(curNode);
}
curNode = curNode->next_in_graph[direction];
}
// 2. Decide whether we can move it all to `movePoint`.
// Say we are moving directly before movePoint and `toMove` starts before
// movePoint in the graph. The move looks like
//
// `toMove` `toMove` |
// <dependencies> -> `movePoint` | `toMove` and deps are split
// `movePoint` <dependencies> |
//
// Contrast with the case where `toMove` starts AFTER movePoint:
//
// `movePoint` <dependencies> |
// <dependencies> -> `toMove` | `toMove` and deps are together
// `toMove` `movePoint` |
//
// In the first case, we need to split `this` off from its dependencies, so we
// can move the dependencies below `movePoint` and keep `toMove` above.
const bool splitToMoveAndDeps =
(moveSide == MoveSide::BEFORE && toMove->isBefore(movePoint)) ||
(moveSide == MoveSide::AFTER && toMove->isAfter(movePoint));
if (splitToMoveAndDeps) {
// remove `this` from dependencies to be moved past `movePoint`
workingSet.eraseMover();
}
// Check if we can move the working set past the move point
if (workingSet.dependsOn(movePoint)) {
// if we can't, then there are intermediate dependencies between the
// `this` and `movePoint`, so we can't do the move
return false;
}
if (dryRun) {
return true;
}
// 3. Execute the move
TORCH_INTERNAL_ASSERT(curNode == movePoint);
if (splitToMoveAndDeps) {
// Move `toMove`
move(toMove, movePoint, moveSide);
// Then move all of its dependencies on the other side of `movePoint`
const auto reversed =
moveSide == MoveSide::BEFORE ? MoveSide::AFTER : MoveSide::BEFORE;
for (auto n : workingSet.dependentNodes()) {
move(n, curNode, reversed);
curNode = n;
}
} else {
// Just append/prepend everything to `movePoint`
move(toMove, curNode, moveSide);
curNode = toMove;
for (auto n : workingSet.dependentNodes()) {
move(n, curNode, moveSide);
curNode = n;
}
}
return true;
}
// Helper function so we can generalize `tryMove`
void AliasDb::move(Node* toMove, Node* movePoint, MoveSide moveSide) {
switch (moveSide) {
case MoveSide::BEFORE:
toMove->moveBefore(movePoint);
break;
case MoveSide::AFTER:
toMove->moveAfter(movePoint);
break;
}
}
bool AliasDb::writesToWildcard(Node* n) const {
if (!writeIndex_->count(n)) {
return false;
}
const auto& writes = writeIndex_->at(n);
// Are any of these memoryLocs a wildcard element?
for (const auto& pr : wildcardIndex_) {
const auto wildcardElement = pr.second;
if (writes.test(wildcardElement->index)) {
return true;
}
}
return false;
}
bool AliasDb::mayAliasWildcard(const Value* v) const {
if (auto e = getWildcard(v->type())) {
return memoryDAG_->mayAlias(elementMap_.at(v), e);
}
// There were no wildcards of this type, so return false.
return false;
}
bool AliasDb::mayAliasWildcard(const at::ArrayRef<Value*> vs) const {
return std::any_of(
vs.begin(), vs.end(), [&](Value* v) { return mayAliasWildcard(v); });
}
c10::optional<Element*> AliasDb::tryGetOrCreateWildcard(const TypePtr& type) {
auto maybe_mut_types = mapTypeToAliasTypeSetPtr(type);
if (!maybe_mut_types) {
return c10::nullopt;
}
auto mut_type = toSingleType(*maybe_mut_types);
auto existing_wildcard = wildcardIndex_.find(*mut_type);
if (existing_wildcard != wildcardIndex_.end()) {
return existing_wildcard->second;
}
auto wildcard_elem = memoryDAGBuilder_->makeFreshValue(nullptr);
wildcardIndex_.emplace(*std::move(mut_type), wildcard_elem);
if (maybe_mut_types->size() > 1) {
pointUnionTypeElementToAllContainedTypes(wildcard_elem, *maybe_mut_types);
} else {
addContainedTypesToFreshElement(wildcard_elem, *maybe_mut_types);
}
return wildcard_elem;
}
void AliasDb::pointUnionTypeElementToAllContainedTypes(
Element* container_elem,
const AliasTypeSet& mut_types) {
for (const auto& mut_type : mut_types) {
auto maybe_elem = tryGetOrCreateWildcard(mut_type);
if (maybe_elem) {
TORCH_INTERNAL_ASSERT(*maybe_elem != container_elem);
memoryDAGBuilder_->makePointerTo(container_elem, *maybe_elem);
}
}
}
void AliasDb::addContainedTypesToFreshElement(
Element* container_elem,
const AliasTypeSet& mut_types) {
for (const auto& mut_type : mut_types) {
for (const auto& contained : mut_type->containedTypes()) {
auto maybe_elem = tryGetOrCreateWildcard(contained);
if (maybe_elem) {
memoryDAGBuilder_->addToContainedElements(*maybe_elem, container_elem);
}
}
}
}
// Search the wildcard index for an element that corresponds to the given type.
// Const version returns nullptr
Element* AliasDb::getWildcard(const TypePtr& type) const {
auto maybe_mut_types = mapTypeToAliasTypeSetPtr(type);
if (!maybe_mut_types) {
return {};
}
if (maybe_mut_types->size() > 1) {
auto union_type = UnionType::create(*maybe_mut_types);
// Get a <TypePtr, Element*> pair where the TypePtr is this Union
// type and the Element is the corresponding Wildcard
auto maybe_union_pair = wildcardIndex_.find(union_type);
if (maybe_union_pair != wildcardIndex_.end()) {
return (*maybe_union_pair).second;
}
} else {
// Get a <TypePtr, Element*> pair where the TypePtr is the given
// type and the Element is the corresponding Wildcard
auto type_pair = wildcardIndex_.find((*maybe_mut_types)[0]);
if (type_pair != wildcardIndex_.end()) {
return type_pair->second;
}
}
return {};
}
// Register `v` as a wildcard value.
c10::optional<Element*> AliasDb::setWildcard(const Value* v) {
c10::optional<Element*> maybe_wildcardElement =
tryGetOrCreateWildcard(v->type());
if (!maybe_wildcardElement) {
return c10::nullopt;
}
// Ensure that we create a corresponding Element for `v` still, as it is an
// invariant that all mutable values have an Element
getOrCreateElement(v);
wildcards_.insert(v);
return *maybe_wildcardElement;
}
void AliasDb::buildWrittenToLocationsIndex() {
MemoryLocations ret;
for (const auto& pr : *writeIndex_) {
const auto& writtenLocs = pr.second;
ret |= writtenLocs;
}
writtenToLocationsIndex_ = ret;
}
void Lint(const AliasDb* db) {
bool failed = false;
std::stringstream ss;
// Every mutable value in the system has a corresponding element.
for (const auto& v : db->graph_->all_values) {
if (!db->isMutableTypeInternal(v)) {
continue;
}
auto it = db->elementMap_.find(v);
if (it == db->elementMap_.end()) {
failed = true;
ss << "Value %" << v->debugName() << " of type " << v->type()->repr_str()
<< " wasn't found in the element map.\n"
<< "It was defined in " << *v->node();
}
}
TORCH_INTERNAL_ASSERT(!failed, ss.str());
// Two checks that we want to add but can't until the mutation API is more
// fully developed.
// - Every mutable value in the aliasdb belongs to the graph
// - All container values have contained elements
}
} // namespace jit
} // namespace torch
|