1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
|
#include <torch/csrc/jit/ir/irparser.h>
#include <ATen/EmptyTensor.h>
#include <torch/csrc/jit/frontend/lexer.h>
#include <torch/csrc/jit/frontend/parse_string_literal.h>
#include <torch/csrc/jit/frontend/schema_type_parser.h>
#include <torch/csrc/jit/ir/ir.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#else
#include <ATen/ops/empty.h>
#include <ATen/ops/empty_strided.h>
#endif
#include <string>
#include <vector>
namespace torch {
namespace jit {
struct VarWithType;
struct ParsedLiteral;
class IRParser {
friend void parseIR(
const std::string& str,
torch::jit::Graph* graph,
std::unordered_map<std::string, Value*>& vmap,
bool parse_tensor_constants);
IRParser(
const std::string& str,
torch::jit::Graph* graph,
std::unordered_map<std::string, Value*>& vmap,
bool parse_tensor_constants)
: L(std::make_shared<Source>(str)),
g(graph),
vmap(vmap),
type_parser(L, /*parse_complete_tensor_types*/ true),
parse_tensor_constants_(parse_tensor_constants) {}
std::string parseVar();
VarWithType parseVarWithType(bool allow_optional = false);
ParsedLiteral parseScalarLiteral(Node* n);
void parse();
void parseGraphInputs();
void parseReturnOperator();
void parseBlocks(Node* parentNode);
void parseBlock(Node* parentNode);
void parseBlockInputs(Block* b);
void parseBlockOutputs(Block* b);
void parseOperatorsList(Block* b);
void parseOperator(Block* b);
void parseOperatorOutputs(std::vector<VarWithType>* outs);
std::string parseOperatorName();
void parseOperatorInputs(Node* n);
void parseAttrs(Node* n);
void parseAttr(Node* n);
void parseList(
int begin,
int sep,
int end,
const std::function<void()>& callback);
void bypassTypeAnnotationList();
Value* findValueInVMap(const std::string& name);
torch::jit::Lexer L;
torch::jit::Graph* g = nullptr;
std::unordered_map<std::string, Value*>& vmap;
SchemaTypeParser type_parser;
bool parse_tensor_constants_;
std::vector<Node*> deferred_tensor_value_initializations_;
std::vector<Node*> deferred_empty_container_initializations_;
};
struct ParsedLiteral {
ParsedLiteral() = default;
AttributeKind k = AttributeKind::t;
int64_t i = 0;
std::string s = "";
double f = 0.0;
c10::complex<double> c = c10::complex<double>(0, 0);
TypePtr ty;
std::vector<int64_t> is;
std::vector<std::string> ss;
std::vector<double> fs;
std::vector<c10::complex<double>> cs;
std::vector<TypePtr> tys;
};
struct VarWithType {
VarWithType() = default;
std::string name;
TypePtr type;
};
void parseIR(
const std::string& str,
torch::jit::Graph* graph,
std::unordered_map<std::string, Value*>& vmap,
bool parse_tensor_constants) {
torch::jit::IRParser p(str, graph, vmap, parse_tensor_constants);
p.parse();
}
void parseIR(
const std::string& str,
torch::jit::Graph* graph,
bool parse_tensor_constants) {
std::unordered_map<std::string, Value*> vmap;
parseIR(str, graph, vmap, parse_tensor_constants);
}
VarWithType IRParser::parseVarWithType(bool allow_optional) {
VarWithType r;
r.name = parseVar();
if (allow_optional) {
r.type = nullptr;
} else {
r.type = TensorType::get();
}
if (L.nextIf(':')) {
auto type_alias = type_parser.parseType();
AT_ASSERTM(!type_alias.second, "Parsing IR with Alias Info not handled");
r.type = type_alias.first;
}
return r;
}
std::string IRParser::parseVar() {
L.expect('%');
std::string name;
bool continue_parsing;
do {
if (L.cur().kind == TK_IDENT) {
name += L.expect(TK_IDENT).text();
} else {
name += L.expect(TK_NUMBER).text();
}
continue_parsing = false;
if (L.nextIf('.')) {
continue_parsing = true;
name += '.';
} else if (L.cur().kind == TK_NUMBER && L.cur().text()[0] == '.') {
continue_parsing = true;
}
} while (continue_parsing);
return name;
}
void IRParser::parseOperatorOutputs(std::vector<VarWithType>* outs) {
if (L.cur().kind != '%') {
return;
}
parseList(TK_NOTHING, ',', TK_NOTHING, [&] {
outs->push_back(parseVarWithType(true));
});
L.expect('=');
}
// Parse string or numeric literal and return it along with its type.
ParsedLiteral IRParser::parseScalarLiteral(Node* n) {
auto token = L.cur();
std::string str;
std::pair<TypePtr, c10::optional<c10::AliasInfo>> type_alias;
ParsedLiteral r;
switch (token.kind) {
case TK_STRINGLITERAL:
r.k = AttributeKind::s;
r.s = parseStringLiteral(token.range, token.text());
L.next();
return r;
case '-':
str = "-";
L.next();
if (L.cur().kind != TK_NUMBER) {
throw ErrorReport(token.range)
<< "Expected a number after '-' but got:" << token.text();
}
// Fallthrough
case TK_NUMBER:
str += L.cur().text();
if (str.find('j') != std::string::npos) {
r.k = AttributeKind::c;
auto imag = c10::stod(str.substr(0, str.size() - 1));
r.c = c10::complex<double>(0, imag);
} else if (
str.find('.') != std::string::npos ||
str.find('e') != std::string::npos) {
r.k = AttributeKind::f;
r.f = c10::stod(str);
} else {
r.k = AttributeKind::i;
r.i = c10::stoll(str);
}
L.next();
return r;
case TK_IDENT:
// Type literal
r.k = AttributeKind::ty;
type_alias = type_parser.parseType();
AT_ASSERTM(!type_alias.second, "Parsing IR with Alias Info not handled");
r.ty = type_alias.first;
return r;
case '<': {
L.next();
auto text = L.expect(TK_IDENT);
if (text.text() != "Tensor") {
throw ErrorReport(token.range)
<< "Could not parse literal" << token.text();
}
if (!parse_tensor_constants_) {
throw ErrorReport(token.range)
<< "Tensor constant encountered but `parse_tensor_constants` set to false"
<< token.text();
}
L.expect('>');
// these values will be set with randomly initialized data in
// a post processing pass;
deferred_tensor_value_initializations_.push_back(n);
r.k = AttributeKind::t;
return r;
}
case '{': {
L.next();
if (L.cur().kind == '-') {
L.next();
}
auto text = L.expect(TK_NUMBER);
if (!parse_tensor_constants_) {
throw ErrorReport(token.range)
<< "Single-element tensor constant encoutered but "
<< "`parse_tensor_constants` is set to false " << token.text();
}
L.expect('}');
deferred_tensor_value_initializations_.push_back(n);
r.k = AttributeKind::t;
return r;
}
default:
throw ErrorReport(token.range)
<< "Could not parse literal" << token.text();
}
}
void IRParser::bypassTypeAnnotationList() {
int depth = 0;
bool bypassed_list = false;
while (depth != 0 || !bypassed_list) {
if (L.cur().kind == '[') {
bypassed_list = true;
depth++;
} else if (L.cur().kind == ']') {
depth--;
}
L.next();
}
}
/** \brief Parse attribute and add it to the node N.
*
* The function determines the attribute type (string, int, float, complex, list
* of strings, list of ints, list of floats, list of complex, and a list of
* tensors (currently only for empty lists)). An attribute looks like the
* following: AttrName=AttrValue Where AttrValue can be a list or a scalar
* literal, e.g.: size = 27 name = "Bob" coefs = [1.2, 3.4, 0.6]
*/
void IRParser::parseAttr(Node* n) {
std::string attrname = L.expect(TK_IDENT).text();
L.expect('=');
if (L.cur().kind == '[') {
// list
AttributeKind k = AttributeKind::ts;
c10::List<int64_t> is;
c10::List<std::string> ss;
c10::List<double> fs;
c10::List<c10::complex<double>> cs;
std::vector<TypePtr> tys;
int elem_num = 0;
parseList('[', ',', ']', [&] {
ParsedLiteral r = parseScalarLiteral(n);
switch (r.k) {
case AttributeKind::s:
ss.push_back(r.s);
AT_ASSERT(!elem_num++ || k == AttributeKind::ss);
k = AttributeKind::ss;
break;
case AttributeKind::i:
is.push_back(r.i);
AT_ASSERT(!elem_num++ || k == AttributeKind::is);
k = AttributeKind::is;
break;
case AttributeKind::f:
fs.push_back(r.f);
AT_ASSERT(!elem_num++ || k == AttributeKind::fs);
k = AttributeKind::fs;
break;
case AttributeKind::c:
cs.push_back(r.c);
AT_ASSERT(!elem_num++ || k == AttributeKind::cs);
k = AttributeKind::cs;
break;
case AttributeKind::ty:
tys.push_back(r.ty);
AT_ASSERT(!elem_num++ || k == AttributeKind::tys);
k = AttributeKind::tys;
break;
default:
throw ErrorReport(L.cur().range) << "Unexpected attr type";
}
});
switch (k) {
case AttributeKind::ts:
n->ival_(Symbol::attr(attrname), IValue());
break;
case AttributeKind::ss:
n->ival_(Symbol::attr(attrname), IValue(ss));
break;
case AttributeKind::fs:
n->ival_(Symbol::attr(attrname), IValue(fs));
break;
case AttributeKind::cs:
n->ival_(Symbol::attr(attrname), IValue(cs));
break;
case AttributeKind::is:
n->ival_(Symbol::attr(attrname), IValue(is));
break;
case AttributeKind::tys:
n->tys_(Symbol::attr(attrname), tys);
break;
default:
throw ErrorReport(L.cur().range) << "Unexpected attr type";
}
} else if (L.cur().text() == "annotate") {
L.next();
L.expect('(');
auto type = L.cur().text();
if (type != "List" && type != "Dict") {
throw ErrorReport(L.cur().range)
<< "Unexpected annotation (only List and Dict can be parsed)";
}
L.next();
// ignore the annotations on the IValue constants, and instead recover
// type from the Node output
// Note: we could also use script_type_parser
bypassTypeAnnotationList();
L.expect(',');
// expect an empty definition (note - this isn't always true)
if (type == "Dict") {
L.expect('{');
L.expect('}');
} else if (type == "List") {
L.expect('[');
L.expect(']');
}
L.expect(')');
deferred_empty_container_initializations_.push_back(n);
} else {
// scalar
ParsedLiteral r = parseScalarLiteral(n);
switch (r.k) {
case AttributeKind::s:
n->s_(Symbol::attr(attrname), r.s);
break;
case AttributeKind::i:
n->i_(Symbol::attr(attrname), r.i);
break;
case AttributeKind::f:
n->f_(Symbol::attr(attrname), r.f);
break;
case AttributeKind::c:
n->c_(Symbol::attr(attrname), r.c);
break;
case AttributeKind::ty:
n->ty_(Symbol::attr(attrname), r.ty);
break;
case AttributeKind::t:
// initialized with random data later
break;
default:
throw ErrorReport(L.cur().range) << "Unexpected attr type";
}
return;
}
}
void IRParser::parseAttrs(Node* n) {
parseList('[', ',', ']', [&] { parseAttr(n); });
}
void IRParser::parseOperatorInputs(Node* n) {
if (L.cur().kind == '[') {
parseAttrs(n);
}
parseList('(', ',', ')', [&] {
std::string var_name = parseVar();
n->addInput(findValueInVMap(var_name));
});
}
void IRParser::parseBlocks(Node* parentNode) {
L.expect(TK_INDENT);
while (L.cur().kind != TK_DEDENT) {
parseBlock(parentNode);
}
L.expect(TK_DEDENT);
}
void IRParser::parseBlockInputs(Block* b) {
parseList('(', ',', ')', [&] {
VarWithType v = parseVarWithType();
// If the name isn't valid, don't use it
std::string uniq_name = Value::isValidName(v.name) ? v.name : "";
vmap[v.name] = b->addInput(uniq_name);
vmap[v.name]->setType(v.type);
});
}
void IRParser::parseBlockOutputs(Block* b) {
L.expect(TK_ARROW);
parseList('(', ',', ')', [&] {
std::string var_name = parseVar();
b->registerOutput(findValueInVMap(var_name));
});
L.expect(TK_NEWLINE);
L.expect(TK_DEDENT);
}
/** \brief Parse a block.
*
* It should look like the following:
* blockName(input1, input2, input3, ...):
* op1
* op2
* ...
* opN
* -> (output1, output2, output3, ...)
*/
void IRParser::parseBlock(Node* parentNode) {
Block* b = parentNode->addBlock();
L.expect(TK_IDENT).text(); // Block name is not used anywhere.
parseBlockInputs(b);
L.expect(':');
parseOperatorsList(b);
parseBlockOutputs(b);
}
/** \brief Parse a list of statements.
*
* It is expected to be delimited by TK_NEWLINE and end with TK_RETURN or
* TK_ARROW.
*/
void IRParser::parseOperatorsList(Block* b) {
L.expect(TK_INDENT);
while (L.cur().kind != TK_ARROW && L.cur().kind != TK_RETURN) {
parseOperator(b);
}
}
std::string IRParser::parseOperatorName() {
std::string name = L.expect(TK_IDENT).text();
L.expect(':');
L.expect(':');
name += "::" + L.expect(TK_IDENT).text();
return name;
}
/** \brief Parse a statement.
*
* It should look like the following:
* <outputs> = NodeName[<attributes>](<inputs>)
* <blocks>
* Outputs, blocks and attributes are optional.
*/
void IRParser::parseOperator(Block* b) {
// Parse lefthand side.
std::vector<VarWithType> outs;
parseOperatorOutputs(&outs);
// Parse the name and create the corresponding node in the graph.
auto source_range = L.cur().range;
std::string name = parseOperatorName();
Node* n = g->create(Symbol::fromQualString(name), {}, outs.size())
->setSourceRange(source_range);
// Parse attributes and inputs.
parseOperatorInputs(n);
const FunctionSchema* schema = n->maybeSchema();
// Register outputs.
int idx = 0;
for (const VarWithType& v : outs) {
vmap[v.name] = n->outputs()[idx];
if (schema && !schema->is_varret()) {
auto schema_return_type = schema->returns().at(idx).type();
if (!v.type) {
vmap[v.name]->setType(schema_return_type);
} else {
// Don't currently support checking against type variables
// TODO: support?
if (!schema_return_type->hasFreeVariables() &&
!v.type->isSubtypeOf(*schema_return_type)) {
throw ErrorReport(source_range)
<< "Annotated type " << v.type->repr_str()
<< " does not match schema type "
<< schema_return_type->repr_str() << " for operator " << *schema;
}
vmap[v.name]->setType(v.type);
}
} else {
vmap[v.name]->setType(v.type ? v.type : TensorType::get());
}
idx++;
}
// Insert the new node into block B.
b->appendNode(n);
// If the statement has nested blocks, parse them:
if (L.cur().kind == TK_INDENT) {
parseBlocks(n);
}
L.nextIf(TK_NEWLINE);
}
void IRParser::parseGraphInputs() {
parseList('(', ',', ')', [&] {
VarWithType v = parseVarWithType();
// If the name isn't valid, don't use it
std::string uniq_name = Value::isValidName(v.name) ? v.name : "";
vmap[v.name] = g->addInput(uniq_name);
vmap[v.name]->setType(v.type);
});
}
/** \brief Parse return statement.
*
* It should look like the following:
* return (x : TypeX, y : TypeY, z, ...)
*/
void IRParser::parseReturnOperator() {
L.expect(TK_RETURN);
// Parse output names and types
parseList('(', ',', ')', [&] {
std::string var_name = parseVar();
g->registerOutput(findValueInVMap(var_name));
});
// Consume ending tokens
if (L.cur().kind != TK_EOF) {
L.expect(TK_NEWLINE);
L.expect(TK_DEDENT);
}
}
/** \brief Parse entire graph.
*
* It should look like the following:
* graphName (input1, input2, ... inputN):
* op1
* op2
* ...
* opN
* return (output1, output2, ... outputN)
*/
void IRParser::parse() {
// Parse graph definition, it should look like the following:
// graphName (input1, input2, ... inputN):
std::string graphName = L.expect(TK_IDENT).text();
parseGraphInputs();
L.expect(':');
// After the definition we should have a list of statements, parse it:
parseOperatorsList(g->block());
// The last statement should be return, which specifies graph outputs
parseReturnOperator();
for (Node* n : deferred_tensor_value_initializations_) {
auto type = n->output()->type()->expect<TensorType>();
auto tt = n->output()->type()->cast<TensorType>();
TORCH_INTERNAL_ASSERT(tt, "expected tensor output ", *n);
auto sizes = tt->sizes().concrete_sizes();
TORCH_INTERNAL_ASSERT(sizes);
auto strides = tt->strides().concrete_sizes();
TORCH_INTERNAL_ASSERT(strides);
auto device = tt->device();
TORCH_INTERNAL_ASSERT(device);
auto dtype = tt->scalarType();
TORCH_INTERNAL_ASSERT(dtype);
auto options = at::TensorOptions(*device).dtype(*dtype);
auto t = n->t_(attr::value, at::empty_strided(*sizes, *strides, options));
(void)t;
}
for (Node* n : deferred_empty_container_initializations_) {
auto type = n->output()->type();
IValue val;
if (type->kind() == TypeKind::ListType) {
val = c10::impl::GenericList(type->containedType(0));
} else if (type->kind() == TypeKind::DictType) {
val = c10::impl::GenericDict(
type->containedType(0), type->containedType(1));
}
n->ival_(attr::value, val);
}
}
void IRParser::parseList(
int begin,
int sep,
int end,
const std::function<void()>& callback) {
if (begin != TK_NOTHING) {
L.expect(begin);
}
if (L.cur().kind != end) {
do {
callback();
} while (L.nextIf(sep));
}
if (end != TK_NOTHING) {
L.expect(end);
}
}
Value* IRParser::findValueInVMap(const std::string& name) {
if (!vmap.count(name)) {
throw ErrorReport(L.cur().range)
<< "Cannot find a variable with name '" << name << "'";
}
return vmap.at(name);
}
} // namespace jit
} // namespace torch
|