1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
#include <torch/csrc/jit/ir/ir.h>
#include <algorithm>
#include <unordered_map>
#include <ATen/core/functional.h>
#include <ATen/core/symbol.h>
#include <c10/util/Exception.h>
#include <c10/util/hash.h>
#include <c10/util/irange.h>
#include <torch/csrc/jit/ir/node_hashing.h>
#include <torch/csrc/jit/passes/common_subexpression_elimination.h>
namespace torch {
namespace jit {
namespace {
bool tensorEqual(const at::Tensor& lhs, const at::Tensor& rhs) {
// type_equal doesnt distinguish between mkldnn/pytorch cpu tensors,
// and we dont want to coalesce mkldnn tensors bc they do layout
// transformations based on usage
if (lhs.is_mkldnn() || rhs.is_mkldnn()) {
return false;
}
if (lhs.is_nested() || rhs.is_nested()) {
return false;
}
// If device is not equal, lhs.equal(rhs) would throw an error.
if (lhs.device() != rhs.device()) {
return false;
}
return lhs.options().type_equal(rhs.options()) && lhs.equal(rhs);
}
bool typeListEqual(
const std::vector<TypePtr>& lhs,
const std::vector<TypePtr>& rhs) {
if (lhs.size() != rhs.size())
return false;
for (const auto i : c10::irange(lhs.size())) {
if (*lhs[i] != *rhs[i]) {
return false;
}
}
return true;
}
template <typename attribute_type> // int64_t, bool, double
bool attributesEqual(attribute_type a1, attribute_type a2) {
return a1 == a2;
}
bool attributesEqual(const at::Tensor& a1, const at::Tensor& a2) {
return tensorEqual(a1, a2);
}
bool ivaluesEqual(const IValue& a1, const IValue& a2);
bool attributesEqual(
const std::vector<at::Tensor>& lhs,
const std::vector<at::Tensor>& rhs) {
if (lhs.size() != rhs.size())
return false;
return std::equal(lhs.begin(), lhs.end(), rhs.begin(), tensorEqual);
}
bool attributesEqual(at::ArrayRef<IValue> a1, at::ArrayRef<IValue> a2) {
if (a1.size() != a2.size()) {
return false;
}
for (const auto i : c10::irange(a1.size())) {
if (!ivaluesEqual(a1[i], a2[i])) {
return false;
}
}
return true;
}
bool attributesEqual(const IValue& a1, const IValue& a2) {
return ivaluesEqual(a1, a2);
}
// this is not a general-purpose comparison of IValues, it only covers the
// ivalues that are allowed as attributes, and it does not check type
// equivalence of containers.
bool ivaluesEqual(const IValue& a1, const IValue& a2) {
if (a1.tagKind() != a2.tagKind()) {
return false;
}
if (a1.isInt()) {
return a1.toInt() == a2.toInt();
}
if (a1.isBool()) {
return a1.toBool() == a2.toBool();
}
if (a1.isDouble()) {
return a1.toDouble() == a2.toDouble();
}
if (a1.isTensor()) {
return attributesEqual(a1.toTensor(), a2.toTensor());
}
if (a1.isNone()) {
return true;
}
if (a1.isString()) {
return a1.toStringRef() == a2.toStringRef();
}
if (a1.isList()) {
return attributesEqual(a1.toListRef(), a2.toListRef());
}
if (a1.isTuple()) {
at::ArrayRef<IValue> a1_elem = a1.toTupleRef().elements();
at::ArrayRef<IValue> a2_elem = a2.toTupleRef().elements();
return attributesEqual(a1_elem, a2_elem);
}
if (a1.isGenericDict()) {
auto a1_dict = a1.toGenericDict();
auto a2_dict = a2.toGenericDict();
if (a1_dict.size() != a2_dict.size()) {
return false;
}
auto it_a1 = a1_dict.begin();
auto it_a2 = a2_dict.begin();
while (it_a1 != a1_dict.end()) {
const auto& e_a1 = *it_a1;
const auto& e_a2 = *it_a2;
if (!ivaluesEqual(e_a1.key(), e_a2.key()) ||
!ivaluesEqual(e_a1.value(), e_a2.value())) {
return false;
}
it_a1++;
it_a2++;
}
return true;
}
if (a1.isEnum()) {
return a1.toEnumHolder() == a2.toEnumHolder();
}
if (a1.isObject()) {
return &a1.toObjectRef() == &a2.toObjectRef();
}
TORCH_INTERNAL_ASSERT(false);
}
// Check whether two nodes have the same attributes in CSE.
// This function may be too conservative for general use.
// Do NOT support g/gs attributes.
bool attributesEqualCSE(const Node* lhs, const Node* rhs) {
AT_ASSERT(lhs != nullptr);
AT_ASSERT(rhs != nullptr);
// One has attributes, the other does not.
if (lhs->hasAttributes() != rhs->hasAttributes())
return false;
// Neither has attributes.
if (!lhs->hasAttributes() && !rhs->hasAttributes())
return true;
auto lnames = lhs->attributeNames();
auto rnames = rhs->attributeNames();
std::sort(lnames.begin(), lnames.end());
std::sort(rnames.begin(), rnames.end());
if (lnames != rnames)
return false;
for (auto name : lnames) {
if (lhs->kindOf(name) != rhs->kindOf(name))
return false;
#define COMPARE_ATTRIBUTEVALUE(selector) \
case AttributeKind::selector: { \
if (!attributesEqual(lhs->selector(name), rhs->selector(name))) \
return false; \
} break;
switch (lhs->kindOf(name)) {
COMPARE_ATTRIBUTEVALUE(f)
COMPARE_ATTRIBUTEVALUE(c)
COMPARE_ATTRIBUTEVALUE(fs)
COMPARE_ATTRIBUTEVALUE(cs)
COMPARE_ATTRIBUTEVALUE(i)
COMPARE_ATTRIBUTEVALUE(is)
COMPARE_ATTRIBUTEVALUE(s)
COMPARE_ATTRIBUTEVALUE(ss)
COMPARE_ATTRIBUTEVALUE(t)
COMPARE_ATTRIBUTEVALUE(ts)
COMPARE_ATTRIBUTEVALUE(ival)
case AttributeKind::ty:
if (*lhs->ty(name) != *rhs->ty(name)) {
return false;
}
break;
case AttributeKind::tys:
if (!typeListEqual(lhs->tys(name), rhs->tys(name))) {
return false;
}
break;
case AttributeKind::g:
case AttributeKind::gs:
return false;
}
#undef COMPARE_ATTRIBUTEVALUE
}
return true;
}
} // anonymous namespace
// Makes a hash that hashes the input Value, the output type
// as well as the node attributes
size_t HashNode::operator()(const Node* k) const {
AT_ASSERT(k != nullptr);
size_t constant_hash = 0;
if (k->kind() == prim::Constant) {
TypePtr type = k->output()->type();
if (type->isSubtypeOf(*NumberType::get()) &&
k->kindOf(attr::value) == AttributeKind::i) {
constant_hash = std::hash<int64_t>{}(k->i(attr::value));
} else if (
type->isSubtypeOf(*NumberType::get()) &&
k->kindOf(attr::value) == AttributeKind::f) {
constant_hash = std::hash<double>{}(k->f(attr::value));
} else if (
type->isSubtypeOf(*NumberType::get()) &&
k->kindOf(attr::value) == AttributeKind::c) {
constant_hash = c10::hash<c10::complex<double>>{}(k->c(attr::value));
} else if (type->isSubtypeOf(*BoolType::get())) {
constant_hash = std::hash<bool>{}(k->i(attr::value));
}
}
return get_hash(
k->kind(),
fmap(k->outputs(), [](const Value* v) { return v->type()->kind(); }),
fmap(k->inputs(), [](const Value* v) { return v->unique(); }),
constant_hash);
};
// Checks that two nodes have the same inputs, output types
// and node attributes.
bool EqualNode::operator()(const Node* lhs, const Node* rhs) const {
if (lhs == nullptr && rhs == nullptr)
return true;
if (lhs == nullptr || rhs == nullptr)
return false;
if (lhs->kind() != rhs->kind())
return false;
// Check whether the output types are the same.
auto lhs_outputs = lhs->outputs();
auto rhs_outputs = rhs->outputs();
if (lhs_outputs.size() != rhs_outputs.size())
return false;
for (const auto i : c10::irange(lhs_outputs.size())) {
const auto& lt = lhs_outputs[i]->type();
const auto& rt = rhs_outputs[i]->type();
if (!(lt == rt || *lt == *rt))
return false;
}
// Check whether the inputs are the same.
auto lhs_inputs = lhs->inputs();
auto rhs_inputs = rhs->inputs();
if (lhs_inputs.size() != rhs_inputs.size())
return false;
if (!std::equal(lhs_inputs.begin(), lhs_inputs.end(), rhs_inputs.begin()))
return false;
if (!attributesEqualCSE(lhs, rhs))
return false;
// Check if the blocks contained in a op are the same
if (lhs->blocks().size() != rhs->blocks().size()) {
return false;
}
for (size_t i = 0; i < lhs->blocks().size(); ++i) {
if (lhs->blocks()[i] != rhs->blocks()[i]) {
return false;
}
}
return true;
};
} // namespace jit
} // namespace torch
|