1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
|
#include <ATen/core/ivalue.h>
#include <caffe2/serialize/file_adapter.h>
#include <caffe2/serialize/inline_container.h>
#include <torch/csrc/jit/api/compilation_unit.h> // removed after using simple type_resolver/obj_loader
#include <torch/csrc/jit/mobile/compatibility/model_compatibility.h>
#include <torch/csrc/jit/mobile/file_format.h>
#include <torch/csrc/jit/mobile/import.h> // removed after using simple type_resolver/obj_loader
#include <torch/csrc/jit/mobile/type_parser.h>
#include <torch/csrc/jit/serialization/import_export_constants.h>
#include <torch/csrc/jit/serialization/import_read.h>
#include <caffe2/serialize/in_memory_adapter.h>
#include <sstream>
#include <string>
#include <unordered_set>
#include <vector>
namespace c10 {
TypePtr parseType(const std::string& pythonStr);
} // namespace c10
namespace torch {
namespace jit {
using caffe2::serialize::FileAdapter;
using caffe2::serialize::IStreamAdapter;
using caffe2::serialize::PyTorchStreamReader;
using caffe2::serialize::ReadAdapterInterface;
c10::IValue readArchive(
const std::string& archive_name,
PyTorchStreamReader& stream_reader) {
c10::optional<at::Device> device;
std::shared_ptr<CompilationUnit> compilation_unit =
std::make_shared<CompilationUnit>();
// TODO (T90180710): Simplify type_resolver and obj_loader when getting
// bytecode version from model
auto type_resolver = [&](const c10::QualifiedName& qn) {
return typeResolverMobile(qn, compilation_unit);
};
std::shared_ptr<mobile::CompilationUnit> mobile_compilation_unit =
std::make_shared<mobile::CompilationUnit>();
auto obj_loader = [&](at::StrongTypePtr type, IValue input) {
return objLoaderMobile(type, input, *mobile_compilation_unit);
};
bool bytecode_tensor_in_constants_archive =
(archive_name == "bytecode" && !isTensorInBytecodeArchive(stream_reader));
auto ivalues = torch::jit::readArchiveAndTensors(
archive_name,
/*pickle_prefix=*/"",
/*tensor_prefix=*/
bytecode_tensor_in_constants_archive ? "constants/" : "",
type_resolver,
obj_loader,
device,
stream_reader,
nullptr);
return ivalues;
}
std::vector<IValue> get_bytecode_ivalues(PyTorchStreamReader& reader) {
return std::move(*readArchive("bytecode", reader).toTuple()).elements().vec();
}
/********************** Bytecode **********************/
// Forward declare
uint64_t _get_model_bytecode_version(
const std::vector<IValue>& bytecode_ivalues);
static uint64_t _get_model_bytecode_version_from_bytes(char* data, size_t size);
uint64_t _get_model_bytecode_version(std::istream& in) {
auto orig_pos = in.tellg();
in.seekg(0, in.beg);
std::shared_ptr<char> data;
size_t size = 0;
std::tie(data, size) = get_stream_content(in);
in.seekg(orig_pos, in.beg);
return _get_model_bytecode_version_from_bytes(data.get(), size);
}
uint64_t _get_model_bytecode_version(const std::string& filename) {
std::ifstream ifile(filename);
return _get_model_bytecode_version(ifile);
}
uint64_t _get_model_bytecode_version(
std::shared_ptr<ReadAdapterInterface> rai) {
std::shared_ptr<char> data;
size_t size = 0;
std::tie(data, size) = get_rai_content(rai.get());
return _get_model_bytecode_version_from_bytes(data.get(), size);
}
uint64_t _get_model_bytecode_version_zip(
std::shared_ptr<ReadAdapterInterface> rai) {
if (!check_zip_file(rai)) {
TORCH_CHECK(
false,
"Failed to open .ptl file please ensure the model was exported for mobile");
}
PyTorchStreamReader reader(std::move(rai));
auto bytecode_values = get_bytecode_ivalues(reader);
return _get_model_bytecode_version(bytecode_values);
}
uint64_t _get_model_bytecode_version_from_bytes(char* data, size_t size) {
TORCH_CHECK(size >= kFileFormatHeaderSize, "Unrecognized data format");
auto format = getFileFormat(data);
switch (format) {
case FileFormat::FlatbufferFileFormat: {
if (get_flatbuffer_bytecode_version == nullptr) {
TORCH_CHECK(
false,
"Flatbuffer input file but the build hasn't enabled flatbuffer");
} else {
return get_flatbuffer_bytecode_version(data);
}
}
case FileFormat::ZipFileFormat: {
auto rai =
std::make_unique<caffe2::serialize::MemoryReadAdapter>(data, size);
auto version = _get_model_bytecode_version_zip(std::move(rai));
return version;
}
default:
TORCH_CHECK(false, "Unrecognized data format");
}
}
uint64_t _get_model_bytecode_version(
const std::vector<IValue>& bytecode_ivalues) {
if (!bytecode_ivalues.empty() && bytecode_ivalues[0].isInt()) {
int64_t model_version = bytecode_ivalues[0].toInt();
TORCH_CHECK(
model_version > 0,
"Expected model bytecode version > 0 got ",
model_version);
return static_cast<uint64_t>(model_version);
}
TORCH_CHECK(false, "Failed to get bytecode version.");
}
/********************** Operator Version **********************/
uint64_t _get_model_operator_version(
PyTorchStreamReader& reader); // Forward Declare
uint64_t _get_model_operator_version(std::istream& in) {
std::unique_ptr<IStreamAdapter> rai = std::make_unique<IStreamAdapter>(&in);
return _get_model_operator_version(std::move(rai));
}
uint64_t _get_model_operator_version(const std::string& filename) {
std::unique_ptr<FileAdapter> rai = std::make_unique<FileAdapter>(filename);
return _get_model_operator_version(std::move(rai));
}
uint64_t _get_model_operator_version(
std::shared_ptr<ReadAdapterInterface> rai) {
if (!check_zip_file(rai)) {
TORCH_CHECK(
false,
"Failed to open .ptl file please ensure the model was exported for mobile");
}
PyTorchStreamReader reader(std::move(rai));
return _get_model_operator_version(reader);
}
uint64_t _get_model_operator_version(PyTorchStreamReader& reader) {
return reader.version();
}
/********************** Operators and Info **********************/
// Forward declare
std::unordered_map<std::string, OperatorInfo> _get_model_ops_and_info(
std::vector<IValue> bytecode_ivalues);
std::unordered_map<std::string, OperatorInfo> _get_model_ops_and_info(
std::istream& in) {
std::unique_ptr<IStreamAdapter> rai = std::make_unique<IStreamAdapter>(&in);
return _get_model_ops_and_info(std::move(rai));
}
std::unordered_map<std::string, OperatorInfo> _get_model_ops_and_info(
const std::string& filename) {
std::unique_ptr<FileAdapter> rai = std::make_unique<FileAdapter>(filename);
return _get_model_ops_and_info(std::move(rai));
}
std::unordered_map<std::string, OperatorInfo> _get_model_ops_and_info(
std::shared_ptr<ReadAdapterInterface> rai) {
if (!check_zip_file(rai)) {
TORCH_WARN("Failed to open zip file for model ops.");
return std::unordered_map<std::string, OperatorInfo>{};
}
PyTorchStreamReader reader(std::move(rai));
auto bytecode_values = get_bytecode_ivalues(reader);
return _get_model_ops_and_info(bytecode_values);
}
/* A function to retrieve the root (top level) operators of a model and their
* corresponding compatibility info. These root operators can call other
* operators within them (traced ops), and a root op can call many different
* traced ops depending on internal code paths in the root op. These traced ops
* are not returned by this function. Those operators are abstracted into the
* runtime as an implementation detail (and the traced ops themselves can also
* call other operators) making retrieving them difficult and their value from
* this api negligible since they will differ between which runtime version the
* model is run on. Because of this, there is a false positive this api can't
* prevent in a compatibility usecase. All the root ops of a model are present
* in a target runtime, but not all the traced ops are which prevents a model
* from being able to run.
**/
std::unordered_map<std::string, OperatorInfo> _get_model_ops_and_info(
std::vector<IValue> bytecode_ivalues) {
constexpr uint64_t min_version_with_schema = 6;
if (_get_model_bytecode_version(bytecode_ivalues) < min_version_with_schema) {
TORCH_WARN(
"Only models with bytecode version 6 and above contain operator schema information. Please re-export your model to generate it");
}
std::unordered_map<std::string, OperatorInfo> result;
if (bytecode_ivalues.empty()) {
TORCH_WARN("Failed to get model ops and info.");
return result;
}
// loop over all the functions in the bytecode
for (const auto i : c10::irange(1, bytecode_ivalues.size())) {
// descend to the operators list
const auto& method_tuple = bytecode_ivalues.at(i).toTupleRef().elements();
auto operators_tuple = method_tuple.at(1).toTupleRef().elements()[1];
auto operators = operators_tuple.toTupleRef().elements()[1];
for (auto& op_tuple : operators.toTupleRef().elements()) {
const auto& op = op_tuple.toTupleRef().elements();
// grab name
std::string op_name = op.at(0).toStringRef();
std::string op_overload_name = op.at(1).toStringRef();
if (op_overload_name != "") {
op_name.append(".");
op_name.append(op_overload_name);
}
// grab schema size
if (op.size() > 2) {
result.emplace(op_name, OperatorInfo{(int)op.at(2).toInt()});
} else { // no schema information use default
result.emplace(op_name, OperatorInfo{});
}
}
}
return result;
}
/********************** Get Type Table **********************/
// Forward declare
std::unordered_set<std::string> _get_mobile_model_contained_types(
const std::vector<IValue>& bytecode_ivalues);
std::unordered_set<std::string> _get_mobile_model_contained_types(
std::istream& in) {
std::unique_ptr<IStreamAdapter> rai = std::make_unique<IStreamAdapter>(&in);
return _get_mobile_model_contained_types(std::move(rai));
}
std::unordered_set<std::string> _get_mobile_model_contained_types(
const std::string& filename) {
std::unique_ptr<FileAdapter> rai = std::make_unique<FileAdapter>(filename);
return _get_mobile_model_contained_types(std::move(rai));
}
std::unordered_set<std::string> _get_mobile_model_contained_types(
std::shared_ptr<ReadAdapterInterface> rai) {
if (!check_zip_file(rai)) {
TORCH_CHECK(
false,
"Failed to open .ptl file please ensure the model was exported for mobile");
}
PyTorchStreamReader reader(std::move(rai));
auto bytecode_values = get_bytecode_ivalues(reader);
return _get_mobile_model_contained_types(bytecode_values);
}
// Get deduplicate type table given bytecode, and each string is a atomic type,
// like str, Tensor and etc. For example,
// input: "Dict[int, Tuple[Tensor, Tensor, Tensor]]"
// output: {Dict, int, Tuple, Tensor}
std::unordered_set<std::string> _get_mobile_model_contained_types(
const std::vector<IValue>& bytecode_ivalues) {
std::unordered_set<std::string> contained_types;
// To avoid parsing same type twice, declare $parsed_type_names_records and
// use type name (string, ex: "Dict[int, Tuple[Tensor, Tensor, Tensor]]") as
// the hash to record which types are parsed.
std::unordered_set<std::string> parsed_type_names_records;
for (const auto i : c10::irange(1, bytecode_ivalues.size())) {
const auto& method_tuple = bytecode_ivalues.at(i).toTupleRef().elements();
auto type_table_tuple =
method_tuple.at(1).toTupleRef().elements()[BYTECODE_INDEX_TYPE];
const auto& type_table =
type_table_tuple.toTupleRef().elements()[1].toTupleRef().elements();
// type_table is a list of IValue, and each IValue is a string,
// for example: "Dict[int, Tuple[Tensor, Tensor, Tensor]]"
std::vector<std::string> type_name_list;
for (const auto& type_definition : type_table) {
std::unordered_set<std::string> type_tokens;
std::string type_name = type_definition.toStringRef();
type_name_list.emplace_back(type_name);
}
at::TypeParser parser(type_name_list);
parser.parseList();
contained_types = parser.getContainedTypes();
}
return contained_types;
}
/********************** Compatibility Checker **********************/
ModelCompatibilityInfo ModelCompatibilityInfo::get(std::istream& in) {
std::unique_ptr<IStreamAdapter> rai = std::make_unique<IStreamAdapter>(&in);
return get(std::move(rai));
}
ModelCompatibilityInfo ModelCompatibilityInfo::get(
const std::string& filename) {
std::unique_ptr<FileAdapter> rai = std::make_unique<FileAdapter>(filename);
return get(std::move(rai));
}
ModelCompatibilityInfo ModelCompatibilityInfo::get(
std::shared_ptr<caffe2::serialize::ReadAdapterInterface> rai) {
if (!check_zip_file(rai)) {
TORCH_CHECK(
false, "Failed to open zip file for model compatibility information");
}
PyTorchStreamReader reader(std::move(rai));
std::vector<IValue> bytecode_values = get_bytecode_ivalues(reader);
uint64_t model_bytecode_version =
_get_model_bytecode_version(bytecode_values);
auto model_info = _get_model_ops_and_info(bytecode_values);
std::unordered_set<std::string> type_table =
_get_mobile_model_contained_types(bytecode_values);
uint64_t operator_version = _get_model_operator_version(reader);
return ModelCompatibilityInfo{
model_bytecode_version, model_info, type_table, operator_version};
}
ModelCompatCheckResult is_compatible(
RuntimeCompatibilityInfo runtime_info,
ModelCompatibilityInfo model_info) {
ModelCompatCheckResult result = {ModelCompatibilityStatus::OK, {}};
// Check that the models bytecode version is less than or equal to
// kMaxSupportedBytecodeVersion from the runtime
if (model_info.bytecode_version >
runtime_info.min_max_supported_bytecode_version.second) {
result.status = ModelCompatibilityStatus::ERROR;
std::ostringstream s;
s << "model bytecode version " << model_info.bytecode_version
<< "is greater than the max supported bytecode version in runtimes "
<< runtime_info.min_max_supported_bytecode_version.second;
result.errors.emplace_back(s.str());
} else if (
model_info.bytecode_version <
runtime_info.min_max_supported_bytecode_version.first) {
result.status = ModelCompatibilityStatus::ERROR;
std::ostringstream s;
s << "model bytecode version " << model_info.bytecode_version
<< "is less than the minimum supported bytecode version in runtime "
<< runtime_info.min_max_supported_bytecode_version.first;
result.errors.emplace_back(s.str());
}
std::unordered_set<std::string> supported_type = runtime_info.supported_types;
// Check type table
for (const auto& type_name : model_info.type_table) {
if (supported_type.find(type_name) == supported_type.end()) {
result.status = ModelCompatibilityStatus::ERROR;
std::ostringstream s;
s << "Primitive type: '" << type_name
<< "' is not supported in current runtime";
result.errors.push_back(s.str());
}
}
// Check operators
std::unordered_map<std::string, OperatorInfo> operator_info =
model_info.operator_info;
for (auto const& op : operator_info) {
std::string op_name = op.first;
OperatorInfo model_op_info = op.second;
// Check if operator not present in runtime
if (runtime_info.operator_info.find(op_name) ==
runtime_info.operator_info.end()) {
result.status = ModelCompatibilityStatus::ERROR;
std::ostringstream s;
s << "Operator '" << op_name << "' missing from runtime (not found)";
result.errors.push_back(s.str());
} else {
OperatorInfo runtime_op_info = runtime_info.operator_info.at(op_name);
// If the runtime op has no schema information its a false alarm and isn't
// actually useable
if (!runtime_op_info.num_schema_args.has_value()) {
result.status = ModelCompatibilityStatus::ERROR;
std::ostringstream s;
s << "Operator '" << op_name
<< "' missing from runtime (missing schema)";
result.errors.push_back(s.str());
} else {
// Check if the model operator has schema information. If it doesn't
// then the model is from a bytecode version < 6 and we are done. If the
// model has more args than the runtime, then the runtime can't know
// what to do so we aren't compatible. If the runtime has more args than
// the model then we can just use default values and be fine.
if (model_op_info.num_schema_args.has_value() &&
(model_op_info.num_schema_args.value() >
runtime_op_info.num_schema_args.value())) {
result.status = ModelCompatibilityStatus::ERROR;
std::ostringstream s;
s << "Operator schema for'" << op_name << "' has "
<< model_op_info.num_schema_args.value()
<< " args in model but only "
<< runtime_op_info.num_schema_args.value() << " in the runtime";
result.errors.push_back(s.str());
}
}
}
}
// Check Operator Versions
if (model_info.operator_version <
runtime_info.min_max_supported_opperator_versions.first ||
model_info.operator_version >
runtime_info.min_max_supported_opperator_versions.second) {
result.status = ModelCompatibilityStatus::ERROR;
std::ostringstream s;
s << "Model Operator Version " << model_info.operator_version
<< "is not within supported version range of the runtime "
<< runtime_info.min_max_supported_opperator_versions.first << " to "
<< runtime_info.min_max_supported_opperator_versions.second;
result.errors.push_back(s.str());
}
return result;
}
} // namespace jit
} // namespace torch
|