1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
|
#include <torch/csrc/jit/mobile/import.h>
#include <torch/csrc/jit/mobile/parse_bytecode.h>
#include <torch/csrc/jit/mobile/parse_operators.h>
#include <ATen/core/ivalue.h>
#include <ATen/core/qualified_name.h>
#include <c10/util/Exception.h>
#include <c10/util/ScopeExit.h>
#include <c10/util/irange.h>
#include <caffe2/serialize/in_memory_adapter.h>
#include <caffe2/serialize/inline_container.h>
#include <caffe2/serialize/read_adapter_interface.h>
#include <caffe2/serialize/versions.h>
#include <torch/csrc/jit/api/compilation_unit.h>
#include <torch/csrc/jit/mobile/file_format.h>
#include <torch/csrc/jit/mobile/interpreter.h>
#include <torch/csrc/jit/mobile/observer.h>
#include <torch/csrc/jit/mobile/type_parser.h>
#include <torch/csrc/jit/mobile/upgrader_mobile.h>
#include <torch/csrc/jit/runtime/instruction.h>
#include <torch/csrc/jit/serialization/import_export_constants.h>
#include <torch/csrc/jit/serialization/import_export_functions.h>
#include <torch/csrc/jit/serialization/import_read.h>
#include <torch/custom_class.h>
#include <exception>
#include <fstream>
#include <string>
#include <vector>
// The import process to serialize the bytecode package.
// An example for bytecode.pkl of a small mobile_module looks like:
// (4, # model version number (caffe2::serialize::kProducedBytecodeVersion)
// # first method
// (
// # function name
// '__torch__.m.forward',
// # code
// (('instructions',
// (('STOREN', 1, 2),
// ('DROPR', 1, 0),
// ('MOVE', 2, 0),
// ('OP', 0, 0),
// ('RET', 0, 0))),
// ('operators', (('aten::Int', 'Tensor'),)),
// ('constants', ()),
// ('types', ()),
// ('register_size', 2)),
// # schema -- optional (forward-compatible addition to version 4)
// (('arguments',
// ((('name', 'x'), ('type', 'Tensor'), ('default_value', 13)),
// ...)), # more args follow here
// ('returns',
// ((('name', ''), ('type', 'Tensor'), ('default_value', None)),
// ...)), # more return values follow here
// )),
// # more methods follow here
// ...)
// In addition, the module debugging information can be saved
// in mobile_debug_handles.pkl. An example for it looks like:
// (4,
// ('__torch__.m.forward',
// (('module_debug_handles', 10))))
// Here 10 is the debug handle.
// We also store separately and optionally callstack_debug_map.
// This serializes inlined callstack (InlinedCallStack data structure)
// corresponding to the debug handles.
// Callstack_debug_map serializes tuples of
// (int64_t(debug_handle), int64_t(source_range_tag), InlinedCallStack)
// source_range_tag maps to .debug_pkl files where this tag maps it to
// source range.
// InlinedCallStack is serialized as:
// IValue(InlinedCallStack) = {IValue(ModuleInstanceInfo),
// int64_t(source_range_tag), IValue(InlinedCallStack)} ModuleInstanceInfo is
// serialized as a tuple of (class_type_name, instance_name)
// Note that currently the backward compatibility is not supported by bytecode.
// This format and process need to be revisited and redesigned if we want to
// support backward compatibility in future.
// Note that the following function-schema fields are not supported:
// - Argument::{known_length_,kwarg_only_}
// - FunctionSchema::{overload_name_, is_vararg_, is_varret_}
namespace torch {
namespace jit {
using caffe2::serialize::MemoryReadAdapter;
using caffe2::serialize::PyTorchStreamReader;
using caffe2::serialize::ReadAdapterInterface;
mobile::Module (*load_flatbuffer_bytes)(
std::shared_ptr<char>,
size_t size,
c10::optional<at::Device>,
ExtraFilesMap*) = nullptr;
mobile::Module (*load_flatbuffer_bytes_no_object)(
std::shared_ptr<char>,
size_t size,
c10::optional<at::Device>) = nullptr;
uint64_t (*get_flatbuffer_bytecode_version)(char* flatbuffer_content) = nullptr;
OpCode parseOpCode(const char* str);
TypePtr resolveTypeNameMobile(
const c10::QualifiedName& qn,
std::shared_ptr<CompilationUnit> compilation_unit) {
// HACK: first we check whether the name starts with special prefix to
// tell if it's a supported pytorch class type. There are two special
// prefixes. "__torch__" for nn module, and "torch.jit" from to_backend.
// This is a reliable
// check today, but there is no guarantee that this is the case. The
// real solution is to merge type parsers so we can share class
// resolution logic.
static const c10::QualifiedName torchPrefix = "__torch__";
static const c10::QualifiedName jitPrefix = "torch.jit";
if (torchPrefix.isPrefixOf(qn) || jitPrefix.isPrefixOf(qn)) {
if (compilation_unit->get_class(qn) == nullptr) {
auto typeptr = ClassType::create(qn, compilation_unit, true);
compilation_unit->register_type(typeptr);
}
return compilation_unit->get_class(qn);
} else {
return c10::parseType(qn.qualifiedName());
}
}
c10::StrongTypePtr typeResolverMobile(
const c10::QualifiedName& qn,
std::shared_ptr<CompilationUnit> compilation_unit) {
return c10::StrongTypePtr(
compilation_unit, resolveTypeNameMobile(qn, compilation_unit));
}
c10::intrusive_ptr<c10::ivalue::Object> objLoaderMobile(
const at::StrongTypePtr& type,
const IValue& input,
mobile::CompilationUnit& mobile_compilation_unit) {
auto cls = type.type_->expect<at::ClassType>();
auto qn = cls->name();
c10::QualifiedName method_name(qn.value(), "__setstate__");
auto setstate = mobile_compilation_unit.find_function(method_name);
auto find_custom_class_with_setstate = [&qn]() -> c10::ClassTypePtr {
auto custom_class_type = torch::jit::getCustomClass(qn->qualifiedName());
if (custom_class_type && custom_class_type->findMethod("__setstate__")) {
return custom_class_type;
}
return nullptr;
};
if (setstate) {
auto obj = c10::ivalue::Object::create(type, 0);
Stack stack({obj, input});
setstate->run(stack);
return obj;
} else if (auto custom_class_type = find_custom_class_with_setstate()) {
auto obj = c10::ivalue::Object::create(
c10::StrongTypePtr(nullptr, custom_class_type), 1);
Stack stack({obj, input});
custom_class_type->getMethod("__setstate__").run(stack);
return obj;
} else {
auto dict = std::move(input).toGenericDict();
size_t ndict = dict.size();
auto obj = c10::ivalue::Object::create(type, ndict);
auto it = dict.begin();
for (const auto i : c10::irange(ndict)) {
cls->addOrCheckAttribute(it->key().toStringRef(), it->key().type());
obj->setSlot(i, it->value());
++it;
}
return obj;
}
}
bool isTensorInBytecodeArchive(
caffe2::serialize::PyTorchStreamReader& stream_reader) {
auto records = stream_reader.getAllRecords();
for (const auto& record : records) {
if (record.find("bytecode/") != std::string::npos) {
return true;
}
}
return false;
}
namespace {
void tryRegisterMethod(const std::vector<c10::Argument>& args, Function& func) {
if (args.empty() || args[0].name() != "self") {
return;
}
if (auto cls = args[0].type()->castRaw<ClassType>()) {
if (C10_UNLIKELY(cls->findMethod(func.name()))) {
return;
}
cls->addMethod(&func);
}
}
// The deserializer class which loads the bytecode package from bc files.
class BytecodeDeserializer final {
public:
explicit BytecodeDeserializer(
std::unique_ptr<PyTorchStreamReader> reader,
uint64_t module_load_options = 0);
mobile::Module deserialize(c10::optional<at::Device> device);
mobile::Module deserialize(
c10::optional<at::Device> device,
ExtraFilesMap& extra_files);
void deserialize_only_extra(
c10::optional<at::Device> device,
ExtraFilesMap& extra_files);
private:
TypePtr resolveTypeName(const c10::QualifiedName& qn);
void init_upgrader(mobile::Function* function);
void parseMethods(
c10::ivalue::TupleElements&& vals,
c10::optional<c10::ivalue::TupleElements>&& debug_handles,
mobile::CompilationUnit& mcu);
c10::IValue readArchive(
const std::string& archive_name,
std::shared_ptr<mobile::CompilationUnit> mcu);
void parseFunctionSchema(
const std::string& function_name,
IValue* schemaTable,
const int64_t& model_version,
mobile::Function* function);
std::shared_ptr<CompilationUnit> compilation_unit_;
std::unordered_set<std::string> imported_libs_;
std::unique_ptr<PyTorchStreamReader> reader_{};
c10::optional<at::Device> device_;
uint64_t module_load_options_;
// From `version` or `.data/version` in model.ptl and it's compute
// dynamically. It's used for finding the minimum required runtime to run all
// operators from the given model. If it's less than the current runtime,
// upgrader will be applied at loading stage.
uint64_t operator_version_;
uint64_t bytecode_version_;
};
BytecodeDeserializer::BytecodeDeserializer(
std::unique_ptr<PyTorchStreamReader> reader,
uint64_t module_load_options)
: compilation_unit_(std::make_shared<CompilationUnit>()),
reader_(std::move(reader)),
module_load_options_(module_load_options) {}
TypePtr BytecodeDeserializer::resolveTypeName(const c10::QualifiedName& qn) {
return resolveTypeNameMobile(qn, compilation_unit_);
}
// It requires compilation_unit_ when parsing function schema. Keep it in
// BytecodeDeserializer. It may be refacotred later to make it independent
// of the specific BytecodeDeserializer, like parsing other tables
void BytecodeDeserializer::parseFunctionSchema(
const std::string& function_name,
IValue* schemaTable,
const int64_t& model_version,
mobile::Function* function) {
// function schema
if (schemaTable) { // (schema is optional for back compat)
auto parseArgList = [this,
function](c10::ivalue::TupleElements&& argTables) {
std::vector<c10::Argument> args;
for (auto& argTable : argTables) {
auto argTableElements = std::move(argTable.toTupleRef()).elements();
auto name =
expect_field(argTableElements, "name", BYTECODE_INDEX_ARGUMENT_NAME)
.toStringRef();
c10::TypePtr type = resolveTypeName(
(expect_field(
argTableElements, "type", BYTECODE_INDEX_ARGUMENT_TYPE))
.toStringRef());
IValue default_value = expect_field(
argTableElements,
"default_value",
BYTECODE_INDEX_ARGUMENT_DEFAULT_VALUE);
args.emplace_back(
name,
std::move(type),
c10::nullopt /*N*/,
std::move(default_value));
}
tryRegisterMethod(args, *function);
return args;
};
auto schemaTableElements = std::move(schemaTable->toTupleRef()).elements();
auto arg_list = std::move(expect_field(
schemaTableElements,
"arguments",
BYTECODE_INDEX_SCHEMA_ARGUMENTS)
.toTupleRef())
.elements();
auto ret_list =
std::move(
expect_field(
schemaTableElements, "returns", BYTECODE_INDEX_SCHEMA_RETURNS)
.toTupleRef())
.elements();
c10::FunctionSchema schema(
function_name,
"" /*overload_name*/,
parseArgList(std::move(arg_list)),
parseArgList(std::move(ret_list)),
false /*is_varargs*/,
false /*is_varret*/);
function->setSchema(std::move(schema));
}
}
void BytecodeDeserializer::init_upgrader(mobile::Function* function) {
for (auto& byteCodeFunctionWithOperator : getUpgraderBytecodeList()) {
function->append_function(byteCodeFunctionWithOperator.function);
}
}
void BytecodeDeserializer::parseMethods(
c10::ivalue::TupleElements&& vals,
c10::optional<c10::ivalue::TupleElements>&& debug_handles,
mobile::CompilationUnit& mcu) {
TORCH_CHECK(vals.size() > 0, "Bytecode has no elements. ");
// Initialized with the version number when kProducedBytecodeVersion was
// introduced. The old models (some of them already in production) without
// version number are seen as version 3 (deprecated).
constexpr uint64_t default_version = 0x3L;
bytecode_version_ = default_version;
size_t method_i_start = 0;
if (vals[0].isInt()) {
bytecode_version_ = vals[0].toInt();
method_i_start = 1;
}
TORCH_CHECK(
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
caffe2::serialize::kMinSupportedBytecodeVersion <= bytecode_version_ &&
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
bytecode_version_ <= caffe2::serialize::kMaxSupportedBytecodeVersion,
"Lite Interpreter version number does not match. ",
"The model version must be between ",
caffe2::serialize::kMinSupportedBytecodeVersion,
" and ",
caffe2::serialize::kMaxSupportedBytecodeVersion,
" but the model version is ",
bytecode_version_);
if (debug_handles) {
TORCH_CHECK(
debug_handles->size() == vals.size(),
"The numbers of bytecode values and debug info values do not match.");
}
// Process all methods in this mobile module.
for (const auto i : c10::irange(method_i_start, vals.size())) {
auto element = std::move(vals[i]);
auto m_tuple = std::move(element.toTupleRef()).elements();
const std::string& function_name = m_tuple[0].toStringRef();
auto codeTableElements =
std::move(std::move(m_tuple[1]).toTupleRef()).elements();
IValue* schemaTable = // older files do not store function schema
(bytecode_version_ > 0x4L ||
(bytecode_version_ == 0x4L && m_tuple.size() >= 3))
? &m_tuple[2]
: nullptr;
auto function =
std::make_unique<mobile::Function>(c10::QualifiedName(function_name));
auto ins_list =
std::move(
expect_field(
codeTableElements, "instructions", BYTECODE_INDEX_INSTRUCTION)
.toTupleRef())
.elements();
auto ops_list =
std::move(expect_field(
codeTableElements, "operators", BYTECODE_INDEX_OPERATOR)
.toTupleRef())
.elements();
auto consts_list =
std::move(expect_field(
codeTableElements, "constants", BYTECODE_INDEX_CONSTANT)
.toTupleRef())
.elements();
auto types_list =
std::move(expect_field(codeTableElements, "types", BYTECODE_INDEX_TYPE)
.toTupleRef())
.elements();
int64_t register_size =
expect_field(
codeTableElements, "register_size", BYTECODE_INDEX_REGISTER_SIZE)
.toInt();
c10::ivalue::TupleElements debug_handles_m_tuple;
if (debug_handles) {
debug_handles_m_tuple =
std::move(std::move((*debug_handles)[i]).toTupleRef()).elements();
}
init_upgrader(function.get());
// 1. First pass all operators from models
parseOperators(std::move(ops_list), module_load_options_, function.get());
// 2. Decides if upgrader is needed
bool use_upgrader =
(operator_version_ < caffe2::serialize::kProducedFileFormatVersion);
parseInstructions(
function_name,
std::move(ins_list),
debug_handles_m_tuple,
function.get());
// 3. If upgrader is needed, change change the OP instrunction to CALL
// instruction (In next PR, use_upgrader will be parsed to parseInstruction
// function and do the actual change)
if (use_upgrader) {
applyUpgrader(function.get(), operator_version_);
}
parseConstants(consts_list, function.get());
parseTypes(types_list, function.get());
function->set_register_size(register_size);
parseFunctionSchema(
function_name, schemaTable, bytecode_version_, function.get());
mcu.register_function(std::move(function));
}
}
void BytecodeDeserializer::deserialize_only_extra(
c10::optional<at::Device> device,
ExtraFilesMap& extra_files) {
device_ = device;
for (const auto& kv : extra_files) {
const std::string& key = "extra/" + kv.first;
if (reader_->hasRecord(key)) {
at::DataPtr meta_ptr;
size_t meta_size = 0;
std::tie(meta_ptr, meta_size) = reader_->getRecord(key);
extra_files[kv.first] =
std::string(static_cast<char*>(meta_ptr.get()), meta_size);
}
}
}
mobile::Module BytecodeDeserializer::deserialize(
c10::optional<at::Device> device,
ExtraFilesMap& extra_files) {
deserialize_only_extra(device, extra_files);
return deserialize(device);
}
mobile::Module BytecodeDeserializer::deserialize(
c10::optional<at::Device> device) {
device_ = device;
auto mcu = std::make_shared<mobile::CompilationUnit>();
// bvals can have 2 possible formats:
//
// 1. Old format: bvals is an array (Tuple) of N elements, each element being
// itself a Tuple(method_name, method_table).
//
// 2. New format: bvals is an array (Tuple) of 1+N elements. The first element
// being a Tuple (int, table), and the integer stands for the bytecode version
// number. The rest of the elements are the same as before.
//
auto bvals = std::move(readArchive("bytecode", mcu).toTupleRef()).elements();
c10::optional<c10::ivalue::TupleElements> debug_handles;
bool has_debug_handles{false};
if (reader_->hasRecord("mobile_debug_handles.pkl")) {
debug_handles =
std::move(readArchive("mobile_debug_handles", mcu).toTupleRef())
.elements();
has_debug_handles = true;
}
operator_version_ = reader_->version();
parseMethods(std::move(bvals), std::move(debug_handles), *mcu);
auto m = mobile::Module(readArchive("data", mcu).toObject(), mcu);
m.set_min_operator_version(operator_version_);
m.set_bytecode_version(bytecode_version_);
m.setHasDebugHandles(has_debug_handles);
#if defined(SYMBOLICATE_MOBILE_DEBUG_HANDLE)
MobileDebugTable debug_table = MobileDebugTable(reader_, compilation_unit_);
m.setDebugTable(std::move(debug_table));
#endif
return m;
}
c10::IValue BytecodeDeserializer::readArchive(
const std::string& archive_name,
std::shared_ptr<mobile::CompilationUnit> mcu) {
auto type_resolver = [this](const c10::QualifiedName& qn) {
return typeResolverMobile(qn, compilation_unit_);
};
auto obj_loader = [&](at::StrongTypePtr type, IValue input) {
return objLoaderMobile(type, input, *mcu);
};
bool bytecode_tensor_in_constants_archive =
(archive_name == "bytecode" &&
!isTensorInBytecodeArchive(*reader_.get()));
auto ivalues = torch::jit::readArchiveAndTensors(
archive_name,
/*pickle_prefix=*/"",
/*tensor_prefix=*/
bytecode_tensor_in_constants_archive ? "constants/" : "",
type_resolver,
obj_loader,
device_,
*reader_.get(),
nullptr);
return ivalues;
}
} // namespace
// Forward declare so that _load_for_mobile() overloads can
// call this method directly.
mobile::Module _load_for_mobile_impl(
std::unique_ptr<ReadAdapterInterface> rai,
c10::optional<c10::Device> device,
ExtraFilesMap& extra_files,
uint64_t module_load_options);
mobile::Module _load_mobile_from_bytes(
std::shared_ptr<char> data,
size_t size,
c10::optional<c10::Device> device,
ExtraFilesMap& extra_files,
uint64_t module_load_options);
mobile::Module _load_for_mobile(
std::istream& in,
c10::optional<at::Device> device) {
ExtraFilesMap extra_files;
return _load_for_mobile(in, device, extra_files);
}
mobile::Module _load_for_mobile(
const std::string& filename,
c10::optional<at::Device> device) {
ExtraFilesMap extra_files;
return _load_for_mobile(filename, device, extra_files);
}
mobile::Module _load_for_mobile(
std::unique_ptr<ReadAdapterInterface> rai,
c10::optional<c10::Device> device) {
ExtraFilesMap extra_files;
return _load_for_mobile(std::move(rai), device, extra_files);
}
mobile::Module _load_for_mobile(
std::istream& in,
c10::optional<at::Device> device,
ExtraFilesMap& extra_files) {
if (getFileFormat(in) == FileFormat::FlatbufferFileFormat) {
std::shared_ptr<char> data;
size_t size = 0;
std::tie(data, size) = get_stream_content(in);
return _load_mobile_from_bytes(
data, size, device, extra_files, kDefaultMobileLoadOptions);
}
std::unique_ptr<IStreamAdapter> rai = std::make_unique<IStreamAdapter>(&in);
auto module = _load_for_mobile_impl(
std::move(rai), device, extra_files, kDefaultMobileLoadOptions);
return module;
}
mobile::Module _load_for_mobile(
const std::string& filename,
c10::optional<at::Device> device,
ExtraFilesMap& extra_files) {
return _load_for_mobile(
filename, device, extra_files, kDefaultMobileLoadOptions);
}
mobile::Module _load_for_mobile(
const std::string& filename,
c10::optional<at::Device> device,
ExtraFilesMap& extra_files,
uint64_t module_load_options) {
auto format = getFileFormat(filename);
if (format == FileFormat::FlatbufferFileFormat) {
std::shared_ptr<char> data;
size_t size = 0;
std::tie(data, size) = get_file_content(filename.c_str());
return _load_mobile_from_bytes(
data, size, device, extra_files, module_load_options);
}
std::unique_ptr<FileAdapter> rai = std::make_unique<FileAdapter>(filename);
return _load_for_mobile_impl(
std::move(rai), device, extra_files, module_load_options);
}
TORCH_API mobile::Module _load_for_mobile(
std::unique_ptr<ReadAdapterInterface> rai,
c10::optional<c10::Device> device,
ExtraFilesMap& extra_files,
uint64_t module_load_options) {
// TODO optimize file read for non-flatbuffer models
std::shared_ptr<char> data;
size_t size = 0;
std::tie(data, size) = get_rai_content(rai.get());
return _load_mobile_from_bytes(
data, size, device, extra_files, module_load_options);
}
mobile::Module _load_mobile_from_bytes(
std::shared_ptr<char> data,
size_t size,
c10::optional<c10::Device> device,
ExtraFilesMap& extra_files,
uint64_t module_load_options) {
TORCH_CHECK(size >= kFileFormatHeaderSize, "Format error");
auto format = getFileFormat(data.get());
switch (format) {
case FileFormat::ZipFileFormat: {
std::unique_ptr<ReadAdapterInterface> rai =
std::make_unique<MemoryReadAdapter>(data.get(), size);
return _load_for_mobile_impl(
std::move(rai), device, extra_files, module_load_options);
}
case FileFormat::FlatbufferFileFormat: {
if (load_flatbuffer_bytes != nullptr) {
return load_flatbuffer_bytes(data, size, device, &extra_files);
} else {
TORCH_CHECK(
false,
"Flatbuffer input file but the build hasn't enabled flatbuffer");
}
}
default: {
TORCH_CHECK(false, "Format error");
}
}
}
mobile::Module _load_for_mobile_impl(
std::unique_ptr<ReadAdapterInterface> rai,
c10::optional<c10::Device> device,
ExtraFilesMap& extra_files,
uint64_t module_load_options) {
auto observer = torch::observerConfig().getModuleObserver();
// NOLINTNEXTLINE(clang-analyzer-security.insecureAPI.rand)
auto instance_key = std::rand();
std::unordered_map<std::string, std::string> metadata_map;
if (observer) {
observer->onEnterLoadModel(instance_key);
auto defaultExtraFileList = observer->getDefaultExtraFiles();
// Add files in defaultExtraFileList to fail_extra_files and extra_files
for (const auto& fileName : defaultExtraFileList) {
extra_files.insert(std::make_pair(fileName, ""));
}
}
const size_t model_size = rai != nullptr ? rai->size() : 0;
auto reader = torch::make_unique<PyTorchStreamReader>(std::move(rai));
BytecodeDeserializer deserializer(std::move(reader), module_load_options);
std::string error_message;
auto guard = c10::make_scope_exit([&]() {
if (!observer) {
return;
}
deserializer.deserialize_only_extra(device, extra_files);
metadata_map = observer->processMetadataFromExtra(extra_files);
observer->onFailLoadModel(
instance_key,
error_message.empty() ? "Unknown exception" : error_message.c_str(),
metadata_map);
});
try {
mobile::Module result = deserializer.deserialize(device, extra_files);
if (observer) {
// Add model_name and model_size to metadata_map
extra_files.insert(std::make_pair("model_name", result.name()));
extra_files.insert(
std::make_pair("model_size", c10::guts::to_string(model_size)));
metadata_map = observer->processMetadataFromExtra(extra_files);
observer->onExitLoadModel(instance_key, metadata_map);
}
result.setMetadata(metadata_map);
guard.release();
return result;
} catch (c10::Error& error) {
error_message = error.what();
TORCH_RETHROW(error);
}
}
void _load_extra_only_for_mobile(
const std::string& filename,
c10::optional<at::Device> device,
ExtraFilesMap& extra_files) {
auto observer = torch::observerConfig().getModuleObserver();
// NOLINTNEXTLINE(clang-analyzer-security.insecureAPI.rand)
auto instance_key = std::rand();
if (observer) {
observer->onEnterLoadModel(instance_key);
}
auto format = getFileFormat(filename);
switch (format) {
case FileFormat::ZipFileFormat: {
std::unique_ptr<FileAdapter> rai =
std::make_unique<FileAdapter>(filename);
auto reader = torch::make_unique<PyTorchStreamReader>(std::move(rai));
BytecodeDeserializer deserializer(std::move(reader));
deserializer.deserialize_only_extra(device, extra_files);
break;
}
case FileFormat::FlatbufferFileFormat: {
// TODO: the current flatbuffers implementation will always load the
// whole module including the extra files. Ideally it should be
// possible to just get the extra files given data
std::shared_ptr<char> data;
size_t size = 0;
std::tie(data, size) = get_file_content(filename.c_str());
if (load_flatbuffer_bytes != nullptr) {
load_flatbuffer_bytes(data, size, device, &extra_files);
} else {
TORCH_CHECK(
false,
"Flatbuffer input file but the build hasn't enabled flatbuffer");
}
break;
}
default: {
TORCH_CHECK(false, "Format error");
}
}
}
namespace mobile {
std::set<std::string> _export_operator_list(
torch::jit::mobile::Module& module) {
std::set<std::string> operator_list;
for (Method func : module.get_methods()) {
const Function& function = func.function();
const auto& code = function.get_code();
// op_names below isn't a list of unique operator names. In fact
// it can contain the same operator name many many times, so we need
// to de-dup the list by adding all the operator names into
// an std::set<std::string>.
std::vector<c10::OperatorName> const& op_names = code.op_names_;
for (auto& op_name : op_names) {
operator_list.insert(toString(op_name));
}
}
return operator_list;
}
} // namespace mobile
} // namespace jit
} // namespace torch
|