1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
|
#include <torch/csrc/jit/mobile/import_data.h>
#include <ATen/Functions.h>
#include <ATen/core/ivalue.h>
#include <c10/util/irange.h>
#include <caffe2/serialize/file_adapter.h>
#include <caffe2/serialize/inline_container.h>
#include <torch/csrc/jit/api/compilation_unit.h>
#include <torch/csrc/jit/mobile/file_format.h>
#include <torch/csrc/jit/mobile/import.h>
#include <torch/csrc/jit/mobile/import_export_common.h>
#include <torch/csrc/jit/mobile/module.h>
#include <torch/csrc/jit/mobile/observer.h>
#include <torch/csrc/jit/mobile/type_parser.h>
#include <torch/csrc/jit/runtime/instruction.h>
#include <torch/csrc/jit/serialization/unpickler.h>
#include <torch/custom_class.h>
#include <caffe2/serialize/in_memory_adapter.h>
#include <exception>
#include <fstream>
#include <string>
#include <vector>
namespace torch {
namespace jit {
using caffe2::serialize::FileAdapter;
using caffe2::serialize::IStreamAdapter;
using caffe2::serialize::MemoryReadAdapter;
using caffe2::serialize::PyTorchStreamReader;
using caffe2::serialize::ReadAdapterInterface;
namespace {
/**
* Given a ZIP file containing a file named "data.pkl", uses Pickle to
* deserialize the file and returns the IValue inside it.
*/
class IValueUnpickler final {
public:
explicit IValueUnpickler(std::unique_ptr<PyTorchStreamReader> reader);
c10::IValue deserialize(c10::optional<at::Device> device);
private:
c10::IValue readArchive(
const std::string& archive_name,
std::shared_ptr<mobile::CompilationUnit> mcu,
c10::optional<at::Device> device);
std::shared_ptr<CompilationUnit> compilation_unit_;
std::unique_ptr<PyTorchStreamReader> reader_;
};
IValueUnpickler::IValueUnpickler(std::unique_ptr<PyTorchStreamReader> reader)
: compilation_unit_(std::make_shared<CompilationUnit>()),
reader_(std::move(reader)) {}
c10::IValue IValueUnpickler::deserialize(c10::optional<at::Device> device) {
auto mcu = std::make_shared<mobile::CompilationUnit>();
// NOLINTNEXTLINE(performance-move-const-arg)
return readArchive("data", mcu, std::move(device));
}
c10::IValue IValueUnpickler::readArchive(
const std::string& archive_name,
std::shared_ptr<mobile::CompilationUnit> mcu,
c10::optional<at::Device> device) {
std::stringstream picklename;
picklename << archive_name << ".pkl";
at::DataPtr pickle_ptr;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
size_t pickle_size;
std::tie(pickle_ptr, pickle_size) = reader_->getRecord(picklename.str());
size_t bytes_read = 0;
auto data = reinterpret_cast<const char*>(pickle_ptr.get());
auto reader = [&](char* buffer, size_t len) -> size_t {
if (bytes_read >= pickle_size) {
return 0;
}
len = std::min(pickle_size - bytes_read, len);
// Copy len bytes into buffer
const char* start = data + bytes_read;
std::memcpy(buffer, start, len);
bytes_read += len;
return len;
};
static const c10::QualifiedName torchPrefix = "__torch__";
auto type_resolver = [&](const c10::QualifiedName& qn) {
TypePtr type;
// HACK: first we check whether the name starts with `__torch__` to tell if
// it's "supposed" to be a class type. This is a reliable check today, but
// there is no guarantee that this is the case. The real solution is to
// merge type parsers so we can share class resolution logic.
if (torchPrefix.isPrefixOf(qn)) {
if (compilation_unit_->get_class(qn) == nullptr) {
auto typeptr = ClassType::create(qn, compilation_unit_, true);
compilation_unit_->register_type(typeptr);
}
type = compilation_unit_->get_class(qn);
} else {
type = c10::parseType(qn.qualifiedName());
}
return c10::StrongTypePtr(compilation_unit_, type);
};
auto obj_loader = [&](const at::StrongTypePtr& type, IValue input) {
auto cls = type.type_->expect<at::ClassType>();
auto qn = cls->name();
c10::QualifiedName method_name(qn.value(), "__setstate__");
auto setstate = mcu->find_function(method_name);
auto find_custom_class_with_setstate = [&qn]() -> c10::ClassTypePtr {
auto custom_class_type = torch::jit::getCustomClass(qn->qualifiedName());
if (custom_class_type && custom_class_type->findMethod("__setstate__")) {
return custom_class_type;
}
return nullptr;
};
if (setstate) {
auto obj = c10::ivalue::Object::create(type, 0);
Stack stack({obj, input});
setstate->run(stack);
return obj;
} else if (auto custom_class_type = find_custom_class_with_setstate()) {
auto obj = c10::ivalue::Object::create(
c10::StrongTypePtr(nullptr, custom_class_type), 1);
Stack stack({obj, input});
custom_class_type->getMethod("__setstate__").run(stack);
return obj;
} else {
auto dict = std::move(input).toGenericDict();
size_t ndict = dict.size();
auto obj = c10::ivalue::Object::create(type, ndict);
auto it = dict.begin();
for (const auto i : c10::irange(ndict)) {
std::stringstream name;
name << it->key();
cls->addOrCheckAttribute(name.str(), it->key().type());
obj->setSlot(i, it->value());
++it;
}
return obj;
}
};
auto read_record = [&](const std::string& name) {
std::stringstream ss;
ss << archive_name << "/" << name;
return std::get<0>(reader_->getRecord(ss.str()));
};
Unpickler unpickler(
reader,
std::move(type_resolver),
std::move(obj_loader),
std::move(read_record),
// NOLINTNEXTLINE(performance-move-const-arg)
std::move(device),
false,
nullptr);
return unpickler.parse_ivalue();
}
/**
* Extracts and returns the parameter map serialized as ZIP + Pickle in @p rai.
*/
std::map<std::string, at::Tensor> load_parameters_from_zip(
std::unique_ptr<ReadAdapterInterface> rai,
c10::optional<c10::Device> device) {
auto reader = torch::make_unique<PyTorchStreamReader>(std::move(rai));
IValueUnpickler unpickler(std::move(reader));
auto result = unpickler.deserialize(device).toGenericDict();
std::map<std::string, at::Tensor> map;
for (const auto& e : result) {
auto key = e.key().toStringRef();
auto value = e.value().toTensor().tensor_data();
map[key] = value;
}
return map;
}
} // namespace
/**
* Extracts the parameter map stored in @p module. Expects a layout
* compatible with the one created by #_save_parameters().
*/
std::map<std::string, at::Tensor> mobile_module_to_parameter_map(
const mobile::Module& module) {
// Safely look for a slot with the expected name. Note that
// c10::ivalue::Object::getAttr() is not safe if the attribute isn't present.
auto obj = module._ivalue();
const std::vector<IValue>& slots = obj->slots();
for (const auto i : c10::irange(slots.size())) {
if (obj->type()->getAttributeName(i) ==
mobile::internal::kSavedParametersAttributeName) {
// Found a slot with the right name; make sure it's a
// Dict<string, Tensor>.
c10::IValue data = slots[i];
if (data.isGenericDict()) {
auto data_dict = data.toGenericDict();
// The key and value should be DynamicTypes that wrap String and Tensor.
c10::DynamicType* keyType =
data_dict.keyType()->castRaw<c10::DynamicType>();
c10::DynamicType* valueType =
data_dict.valueType()->castRaw<c10::DynamicType>();
if (keyType != nullptr &&
keyType->fallback()->kind() == TypeKind::StringType &&
valueType != nullptr &&
valueType->fallback()->kind() == TypeKind::TensorType) {
// Name and type are good; copy the contents to the output map.
std::map<std::string, at::Tensor> params;
for (const auto& e : data_dict) {
// The source Tensor points into the flatbuffer data associated with
// the Module. But, this Tensor needs to outlive the Module, since
// the caller of _load_parameters() won't have a pointer to the
// Module. So, return a deep copy.
const auto& source = e.value().toTensor();
at::Tensor copy = at::empty_like(source); // Must be the same shape.
copy.copy_(source);
params[e.key().toStringRef()] = copy;
}
return params;
}
}
}
}
TORCH_CHECK(
false,
"Could not find Dict<string, Tensor> named '",
mobile::internal::kSavedParametersAttributeName,
"' in deserialized mobile::Module");
}
std::map<std::string, at::Tensor> _load_parameters_bytes(
std::shared_ptr<char> data,
size_t size,
c10::optional<at::Device> device) {
TORCH_CHECK(size >= kFileFormatHeaderSize, "Unrecognized data format");
FileFormat format = getFileFormat(data.get());
// Call the appropriate parser.
std::map<std::string, at::Tensor> map;
switch (format) {
case FileFormat::FlatbufferFileFormat: {
if (load_flatbuffer_bytes_no_object != nullptr) {
auto m = load_flatbuffer_bytes_no_object(data, size, device);
map = mobile_module_to_parameter_map(m);
} else {
TORCH_CHECK(
false,
"Flatbuffer input file but the build hasn't enabled flatbuffer");
}
break;
}
case FileFormat::ZipFileFormat: {
auto rai = std::make_unique<caffe2::serialize::MemoryReadAdapter>(
data.get(), size);
map = load_parameters_from_zip(std::move(rai), device);
break;
}
default:
TORCH_CHECK(false, "Unrecognized data format");
}
return map;
}
std::map<std::string, at::Tensor> _load_parameters(
std::istream& in,
c10::optional<at::Device> device) {
std::shared_ptr<char> data;
size_t size = 0;
std::tie(data, size) = get_stream_content(in);
return _load_parameters_bytes(std::move(data), size, device);
}
std::map<std::string, at::Tensor> _load_parameters(
const std::string& filename,
c10::optional<at::Device> device) {
std::shared_ptr<char> data;
size_t size = 0;
std::tie(data, size) = get_file_content(filename.c_str());
return _load_parameters_bytes(std::move(data), size, device);
}
} // namespace jit
} // namespace torch
|