File: MobileModelRunner.cpp

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (237 lines) | stat: -rw-r--r-- 8,042 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
#include <torch/csrc/jit/mobile/model_tracer/MobileModelRunner.h>
#include <torch/csrc/jit/mobile/model_tracer/TensorUtils.h>

namespace torch {
namespace jit {
namespace mobile {

std::vector<std::vector<at::IValue>> MobileModelRunner::
    ivalue_to_bundled_inputs(const c10::IValue& bundled_inputs) {
  CAFFE_ENFORCE(
      bundled_inputs.isList(),
      "Expected get_all_bundled_inputs to ",
      "return a list but got a ",
      bundled_inputs.tagKind(),
      " instead");

  c10::List<at::IValue> all_inputs = bundled_inputs.toList();
  CAFFE_ENFORCE(
      !all_inputs.empty(),
      "Expected at least 1 bundled input, ",
      "but found none. Please use ",
      "torch.utils.bundled_inputs.augment_model_with_bundled_inputs to add.");

  std::vector<std::vector<at::IValue>> ret;
  for (at::IValue input : all_inputs) {
    CAFFE_ENFORCE(
        input.isTuple(),
        "Expected list element to be a tuple ",
        "but got a ",
        input.tagKind(),
        " instead");
    ret.push_back(input.toTupleRef().elements());
  }

  return ret;
}

std::unordered_map<std::string, std::string> MobileModelRunner::
    ivalue_to_bundled_inputs_map(const c10::IValue& bundled_inputs) {
  CAFFE_ENFORCE(
      bundled_inputs.isGenericDict(),
      "Expected get_bundled_inputs_functions_and_info to ",
      "return a dict but got a ",
      bundled_inputs.tagKind(),
      " instead");

  c10::Dict<at::IValue, at::IValue> all_inputs = bundled_inputs.toGenericDict();
  CAFFE_ENFORCE(
      !all_inputs.empty(),
      "Expected at least 1 function with bundled inputs, ",
      "but found none. Please use ",
      "torch.utils.bundled_inputs.augment_model_with_bundled_inputs to add.");

  std::unordered_map<std::string, std::string> ret;
  for (auto& input : all_inputs) {
    at::IValue function_name = input.key();
    at::IValue nested_dict = input.value();
    CAFFE_ENFORCE(
        function_name.isString(),
        "Expected function with inputs to be a string ",
        "but got a ",
        function_name.tagKind(),
        " instead");
    CAFFE_ENFORCE(
        nested_dict.isGenericDict(),
        "Expected function name to map to dictionary ",
        "but got a ",
        nested_dict.tagKind(),
        " instead");

    // Got the nested dict now need to convert that into std types
    c10::Dict<at::IValue, at::IValue> function_and_info_ival_dict =
        nested_dict.toGenericDict();
    std::unordered_map<std::string, std::vector<std::string>>
        function_and_info_dict;
    for (auto& entry : function_and_info_ival_dict) {
      at::IValue key = entry.key();
      at::IValue value = entry.value();
      CAFFE_ENFORCE(
          key.isString(),
          "Expected extra information key to be a string ",
          "but got a ",
          value.tagKind(),
          " instead");
      CAFFE_ENFORCE(
          value.isList(),
          "Expected extra information values to be a list ",
          "but got a ",
          value.tagKind(),
          " instead");

      // Got the value of the nested dict entry now need to convert it to std
      // types
      std::vector<std::string> data_list;
      c10::List<at::IValue> ival_data = value.toList();
      for (at::IValue data : ival_data) {
        CAFFE_ENFORCE(
            data.isString(),
            "Expected list element of nested dict entries to be a string ",
            "but got a ",
            data.tagKind(),
            " instead");
        data_list.push_back(data.toStringRef());
      }

      // Add entry into std type mapping
      function_and_info_dict[key.toStringRef()] = data_list;
    }

    // Could store the full mapping of std types, but the 'info' section isnt
    // needed here
    std::string input_function =
        function_and_info_dict["get_inputs_function_name"][0];
    ret[function_name.toStringRef()] = input_function;
  }

  return ret;
}

std::vector<std::vector<at::IValue>> MobileModelRunner::
    get_all_bundled_inputs() {
  auto has_bundled_input = module_->find_method("get_all_bundled_inputs");
  CAFFE_ENFORCE(
      has_bundled_input,
      "Model does not have bundled inputs. ",
      "Use torch.utils.bundled_inputs.augment_model_with_bundled_inputs to add.");

  c10::IValue bundled_inputs = module_->run_method("get_all_bundled_inputs");
  return ivalue_to_bundled_inputs(bundled_inputs);
}

std::unordered_map<std::string, std::vector<std::vector<at::IValue>>>
MobileModelRunner::get_many_functions_bundled_inputs() {
  auto has_bundled_input =
      module_->find_method("get_bundled_inputs_functions_and_info");
  CAFFE_ENFORCE(
      has_bundled_input,
      "Model does not have bundled inputs. ",
      "Use torch.utils.bundled_inputs.augment_many_model_functions_with_bundled_inputs to add.");

  auto ival_bundled_inputs_mapping =
      module_->run_method("get_bundled_inputs_functions_and_info");
  auto bundled_inputs_mapping =
      ivalue_to_bundled_inputs_map(ival_bundled_inputs_mapping);

  std::unordered_map<std::string, std::vector<std::vector<at::IValue>>> ret;

  for (auto& entry : bundled_inputs_mapping) {
    std::string function_name = entry.first;
    std::string function_to_call = entry.second;

    auto has_func_to_call = module_->find_method(function_to_call);
    CAFFE_ENFORCE(
        has_func_to_call,
        "Model does not have ",
        function_to_call,
        "Use torch.utils.bundled_inputs.augment_many_model_functions_with_bundled_inputs to add.");

    c10::IValue bundled_inputs = module_->run_method(function_to_call);
    ret[function_name] = ivalue_to_bundled_inputs(bundled_inputs);
  }
  return ret;
}

std::vector<at::IValue> MobileModelRunner::run_with_inputs(
    std::vector<std::vector<at::IValue>> const& bundled_inputs) {
  std::vector<at::IValue> ret;
  ret.reserve(bundled_inputs.size());
  for (std::vector<at::IValue> const& input : bundled_inputs) {
    ret.emplace_back(module_->forward(input));
  }
  return ret;
}

std::vector<at::IValue> MobileModelRunner::run_with_inputs(
    const std::string& function_name,
    std::vector<std::vector<at::IValue>> const& bundled_inputs) const {
  std::vector<at::IValue> ret;
  ret.reserve(bundled_inputs.size());
  auto has_bundled_input = module_->find_method(function_name);
  CAFFE_ENFORCE(
      has_bundled_input,
      "Model does not have the method named ",
      function_name,
      "Please ensure that it was exported correctly");
  for (std::vector<at::IValue> const& input : bundled_inputs) {
    auto func = module_->get_method(function_name);
    ret.emplace_back(func(input));
  }
  return ret;
}

void MobileModelRunner::run_argless_functions(
    const std::vector<std::string>& functions) {
  for (auto& function_name : functions) {
    if (module_->find_method(function_name)) {
      module_->run_method(function_name);
    }
  }
}

bool MobileModelRunner::set_has_metal_gpu_operators(
    std::set<std::string> const& op_list) {
  for (std::string const& op : op_list) {
    if (op.find("metal::") == 0 || op.find("metal_prepack::") == 0 ||
        op.find("metal_prepack_unet::") == 0) {
      return true;
    }
  }
  return false;
}

void MobileModelRunner::for_each_tensor_in_bundled_inputs(
    std::function<void(const ::at::Tensor&)> const& func) {
  if (has_new_style_bundled_inputs()) {
    // Get the bundled inputs and access the arg level ivalues stored within
    auto bundled_inputs_mapping = this->get_many_functions_bundled_inputs();

    // Loop over functions
    for (auto& entry : bundled_inputs_mapping) {
      std::vector<std::vector<at::IValue>> bundled_inputs = entry.second;
      // Loop through inputs
      for (const std::vector<at::IValue>& input : bundled_inputs) {
        // Loop through values in an input
        for (const at::IValue& iv : input) {
          for_each_tensor_in_ivalue(iv, func);
        }
      }
    }
  } else {
    c10::IValue iv = module_->run_method("get_all_bundled_inputs");
    for_each_tensor_in_ivalue(iv, func);
  }
}
} // namespace mobile
} // namespace jit
} // namespace torch