1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
|
#include <ATen/Functions.h>
#include <ATen/core/dispatch/Dispatcher.h>
#include <ATen/core/dispatch/ObservedOperators.h>
#include <c10/core/ScalarType.h>
#include <c10/util/Exception.h>
#include <torch/csrc/autograd/grad_mode.h>
#include <torch/csrc/jit/mobile/compatibility/runtime_compatibility.h>
#include <torch/csrc/jit/mobile/model_tracer/KernelDTypeTracer.h>
#include <torch/csrc/jit/mobile/model_tracer/MobileModelRunner.h>
#include <torch/csrc/jit/mobile/model_tracer/OperatorCallTracer.h>
#include <torch/csrc/jit/mobile/model_tracer/TensorUtils.h>
#include <torch/csrc/jit/mobile/model_tracer/TracerRunner.h>
#include <torch/csrc/jit/mobile/parse_operators.h>
#include <torch/csrc/jit/runtime/operator.h>
#include <torch/script.h>
namespace torch {
namespace jit {
namespace mobile {
// Fetched from caffe2/aten/src/ATen/native/metal/MetalAten.mm
// Diffusion Link: https://fburl.com/diffusion/atwwmax2
const std::vector<std::string> gpu_metal_operators = {
"aten::conv2d",
"aten::add.Tensor",
"aten::add_.Tensor",
"aten::addmm",
"aten::empty.memory_format",
"aten::empty_strided",
"aten::log_softmax.int",
"aten::max_pool2d",
"aten::mul.Tensor",
"aten::relu",
"aten::relu_",
"aten::sigmoid",
"aten::sub.Tensor",
"aten::upsample_nearest2d.vec",
"aten::view",
"aten::adaptive_avg_pool2d",
"aten::hardtanh_",
"aten::reshape",
"aten::flatten.using_ints",
};
/**
* These are a collection of some common ATen methods that are usually
* called outside of the Model's forward() run, and they need to be
* traced to ensure that the used operators are included in the build.
* If/When this list becomes too long, we can consider making it a
* per-model list.
*/
void call_setup_methods() {
at::zeros({2, 2});
at::ones({2, 2});
at::Tensor t1 = at::empty({7, 7});
at::Tensor t2 = t1.fill_(3);
at::Tensor t3 = t1.new_empty_strided(
{2, 3},
{3,
1}); // TODO investigate how this is different from normal empty_strided
at::narrow(t2, 1, 0, 1);
at::eq(t1, t2);
const volatile bool nz = at::native::is_nonzero(at::zeros({1}));
(void)nz;
// Create a byte tensor and copy it
auto zb = at::zeros({10}, at::kByte);
auto zf = at::zeros({10}, at::kFloat);
zb.copy_(zf);
t2.div(1);
// Typically, failures show up in CopyKernel.cpp, so enumerating
// common dtypes that may show up.
const auto all_dtypes_for_copy = {
at::kBool,
at::kByte,
at::kFloat,
at::kInt,
at::kChar,
at::kDouble,
at::kShort,
at::kLong};
for (const auto dtype : all_dtypes_for_copy) {
auto tensor1 = at::empty({10}, dtype);
tensor1.copy_(at::zeros({10}, at::kBool));
tensor1.copy_(at::zeros({10}, at::kFloat));
tensor1.copy_(at::zeros({10}, at::kInt));
}
torch::zeros({0, 0}, torch::ScalarType::Float);
std::vector<float> storage(20, 1.0);
std::vector<int64_t> sizes({2, 10});
torch::from_blob(storage.data(), at::IntArrayRef(sizes), at::kFloat);
}
/**
* Call methods on the Tensor object that we expect to be called
* in production on this Tensor.
*/
void consume_tensor(const at::Tensor& t) {
const at::Tensor& c = t;
c.copy_(t.cpu());
}
std::unordered_map<std::string, c10::FunctionSchema>
_get_runtime_ops_and_schema() {
std::unordered_map<std::string, c10::FunctionSchema> result;
// Grab the jit operators
auto nonDispatcherOperators = torch::jit::getAllOperators();
for (const auto& full_op : nonDispatcherOperators) {
auto op = full_op->schema();
auto op_name = op.name();
if (!op.overload_name().empty()) {
op_name += ("." + op.overload_name());
}
result.emplace(op_name, op);
}
// Grab the dispatcher operators
auto dispatcherOperators = c10::Dispatcher::singleton().getAllOpNames();
for (auto& op : dispatcherOperators) {
// grab schema
const auto op_handle = c10::Dispatcher::singleton().findOp(op);
if (op_handle->hasSchema()) {
auto op_name = op.name;
if (!op.overload_name.empty()) {
op_name += ("." + op.overload_name);
}
result.emplace(op_name, op_handle->schema());
}
}
return result;
}
/**
* For the vast majority of usecases the instrumentation in getCustomClass will
* catch any custom classes referenced by a model. There are however, niche
* situations that avoid the getCustomClass instrumentation due to some nuances
* of mobile model deserialization. To get around that we can search through all
* the used ops, and inspect their schemas to search for any referenced classes.
* Example schema: prepacked::linear_clamp_prepack(Tensor W, Tensor? B=None,
* Scalar? output_min=None, Scalar? output_max=None) ->
* __torch__.torch.classes.xnnpack.LinearOpContext"
*/
void recordCustomClassesFromOpSchemas(
std::set<std::string>& root_ops,
std::set<std::string>& traced_ops,
std::set<std::string>& loaded_classes) {
std::set<std::string> ops;
ops.insert(root_ops.begin(), root_ops.end());
ops.insert(traced_ops.begin(), traced_ops.end());
auto ops_and_schemas = _get_runtime_ops_and_schema();
auto record_if_class = [&](std::string type_name) {
// All custom class types start with __torch__ not sure if this is by
// chance or guaranteed
if (type_name.find("__torch__") != std::string::npos) {
// The name of a customClassType here is its fully qualified name, but
// in registration only the class name is used so only record that
auto class_name = type_name.substr(type_name.find_last_of('.') + 1);
// Function schemas can include other type indicators such as [] so we
// need to trim to just alphanumeric + '_' characters as well
class_name = class_name.substr(
0,
class_name.find_first_not_of(
"aAbBcCdDeEfFgGhHiIjJkKlLmMnNoOpPqQrRsStTuUvVwWxXyYzZ_1234567890"));
loaded_classes.insert(class_name);
}
};
for (auto& op_name : ops) {
// This check is only necessary because of GPU models.
// Certain models can only run on a specific backend say metal.
// Those ops will be present in the models root ops, but likely
// not the tracer on linux
if (ops_and_schemas.find(op_name) != ops_and_schemas.end()) {
auto& schema = ops_and_schemas.at(op_name);
for (auto& arg : schema.arguments()) {
record_if_class(arg.type()->annotation_str());
}
for (auto& ret : schema.returns()) {
record_if_class(ret.type()->annotation_str());
}
}
}
}
void run_model(
const std::string& input_module_path,
std::set<std::string>& root_ops,
std::set<std::string>& enabled_backends,
KernelDTypeTracer::kernel_tags_type& called_kernel_tags) {
// Load the module on CPU with the flag to skip the operator exists check.
// This is needed so that we can load any TorchBind objects (custom classes)
// that this model refers to so that any operators being called from those
// TorchBind objects can be traced by the model tracer.
torch::jit::mobile::MobileModelRunner module_runner(input_module_path, 0);
root_ops = module_runner.get_root_operators();
std::cout << "Got " << root_ops.size() << " Root Operators." << std::endl;
if (torch::jit::mobile::MobileModelRunner::set_has_metal_gpu_operators(
root_ops)) {
std::cout << "Inferred Metal GPU Model." << std::endl;
root_ops.insert(gpu_metal_operators.begin(), gpu_metal_operators.end());
called_kernel_tags["__unused__"] = {"Float"};
enabled_backends.insert("Metal GPU");
// When we encounter a GPU model, we should call .cpu().copy_() on the
// tensors in the bundled inputs, since this is what will happen when
// such a model is executed on an iOS device (to copy the Tensor to Metal
// memory via a call to .metal()).
module_runner.for_each_tensor_in_bundled_inputs(consume_tensor);
} else {
std::cout << "Inferred CPU Model." << std::endl;
enabled_backends.insert("CPU");
torch::jit::mobile::MobileModelRunner mobile_module_runner(
input_module_path);
// When we encounter a CPU model, we should call .cpu().copy_() on the
// tensors in the bundled inputs, since this is what will happen when
// such a model is executed on an Android device since the PyTorch JNI
// bindings call .cpu() in JIValue::newJIValueFromAtIValue().
module_runner.for_each_tensor_in_bundled_inputs(consume_tensor);
// If a user has bundled inputs since that api was updated to accept
// bundled inputs for multiple methods They should go down this route.
// Even if they only bundle inputs for forward they will have the new
// style bundled inputs. Since at this time in tracer.cpp we do not know
// what functions have bundled inputs we must call
// get_bundled_inputs_functions_and_info if it exists to get the set.
if (mobile_module_runner.has_new_style_bundled_inputs()) {
auto bundled_inputs_mapping =
mobile_module_runner.get_many_functions_bundled_inputs();
for (auto& entry : bundled_inputs_mapping) {
std::string function_name = entry.first;
std::vector<std::vector<at::IValue>> bundled_inputs = entry.second;
std::cout << "Got " << bundled_inputs.size() << " bundled input(s) for "
<< function_name << "\n\n";
std::vector<at::IValue> results =
mobile_module_runner.run_with_inputs(function_name, bundled_inputs);
for (auto& result : results) {
// Consume the result Tensor(s) when tracing on CPU since the
// Android/Java JNI bindings will do the same.
torch::jit::mobile::for_each_tensor_in_ivalue(result, consume_tensor);
}
}
// If get_bundled_inputs_functions_and_info does not exists we default
// to assuming they bundled before that change was made. If no bundled
// inputs are found here either an error will be thrown
} else {
std::vector<std::vector<at::IValue>> bundled_inputs =
mobile_module_runner.get_all_bundled_inputs();
std::cout << "Got " << bundled_inputs.size() << " bundled input(s)\n\n";
std::vector<at::IValue> results =
mobile_module_runner.run_with_inputs(bundled_inputs);
for (auto& result : results) {
// Consume the result Tensor(s) when tracing on CPU since the
// Android/Java JNI bindings will do the same.
torch::jit::mobile::for_each_tensor_in_ivalue(result, consume_tensor);
}
}
}
}
TracerResult trace_run(const std::string& input_module_path) {
return trace_run(std::vector<std::string>(1, input_module_path));
}
TracerResult trace_run(const std::vector<std::string>& input_module_paths) {
at::globalContext().setQEngine(at::QEngine::QNNPACK);
c10::ObservedOperators::getUnobservedOperatorList().clear();
torch::jit::mobile::OperatorCallTracer op_tracer;
torch::jit::mobile::KernelDTypeTracer kdtype_tracer;
torch::jit::mobile::CustomClassTracer custom_class_tracer;
torch::jit::mobile::BuildFeatureTracer build_feature_tracer;
call_setup_methods();
std::set<std::string> root_ops, traced_operators, enabled_backends,
loaded_classes, build_features;
torch::jit::mobile::KernelDTypeTracer::kernel_tags_type called_kernel_tags;
using torch::jit::MobileModuleLoadOptions;
for (auto& input_module_path : input_module_paths) {
// run with QNNPACK
at::globalContext().setQEngine(at::QEngine::QNNPACK);
run_model(
input_module_path, root_ops, enabled_backends, called_kernel_tags);
// Not every model can be successfully run with fbgemm,
// but for those that can this can help broaden the tracers scope around
// hyper optimized QNNPack paths
try {
at::globalContext().setQEngine(at::QEngine::FBGEMM);
run_model(
input_module_path, root_ops, enabled_backends, called_kernel_tags);
} catch (std::exception& ex) {
std::cerr
<< "ModelTracer encountered an error while attempting to run the model in FBGEMM mode"
<< ex.what() << "\n Skipping FBGEMM execution" << std::endl;
}
}
op_tracer.getCalledOperators().withLock(
[&](std::set<std::string>& called_operators) {
traced_operators = called_operators;
});
recordCustomClassesFromOpSchemas(root_ops, traced_operators, loaded_classes);
kdtype_tracer.getCalledKernelTags().withLock(
[&](KernelDTypeTracer::kernel_tags_type& kernel_tags) {
called_kernel_tags.insert(kernel_tags.begin(), kernel_tags.end());
});
traced_operators.insert(
always_included_traced_ops.begin(), always_included_traced_ops.end());
custom_class_tracer.getLoadedClasses().withLock(
[&](CustomClassTracer::custom_classes_type& custom_classes) {
loaded_classes.insert(custom_classes.begin(), custom_classes.end());
});
build_feature_tracer.getBuildFeatures().withLock(
[&](BuildFeatureTracer::build_feature_type& bf) {
build_features.insert(bf.begin(), bf.end());
});
TracerResult tracer_result = {
root_ops,
traced_operators,
called_kernel_tags,
loaded_classes,
build_features,
enabled_backends};
return tracer_result;
}
} // namespace mobile
} // namespace jit
} // namespace torch
|