1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
|
#include <torch/csrc/jit/mobile/module.h>
#include <torch/csrc/jit/backends/backend_exception.h>
#include <torch/csrc/jit/mobile/interpreter.h>
#include <torch/csrc/jit/mobile/observer.h>
#include <torch/csrc/jit/mobile/type_parser.h>
#include <torch/csrc/jit/runtime/jit_exception.h>
#include <exception>
#include <ATen/record_function.h>
#include <c10/util/ScopeExit.h>
#include <c10/util/irange.h>
namespace torch {
namespace jit {
std::ostream& operator<<(std::ostream& out, Instruction inst);
namespace mobile {
void CompilationUnit::register_function(std::unique_ptr<Function> fn) {
methods_.emplace_back(std::move(fn));
}
const Function* CompilationUnit::find_function(
const c10::QualifiedName& qn) const {
for (auto& fn : methods_) {
if (fn->qualname() == qn) {
return fn.get();
}
}
return nullptr;
}
Function* CompilationUnit::find_function(const c10::QualifiedName& qn) {
// NOLINTNEXTLINE
return const_cast<Function*>(
static_cast<const CompilationUnit*>(this)->find_function(qn));
}
Method Module::get_method(const std::string& name) const {
if (auto method = find_method(name)) {
return *method;
}
AT_ERROR("Method '", name, "' is not defined.");
}
bool Module::compareMethodSchemas(
const std::string& name_1,
const std::string& name_2) {
c10::optional<c10::FunctionSchema> schema_1, schema_2;
for (const auto& fn : cu_->methods()) {
if (fn->name() == name_1) {
schema_1 = fn->getSchema();
}
if (fn->name() == name_2) {
schema_2 = fn->getSchema();
}
}
if (schema_1.has_value() && schema_2.has_value()) {
return (schema_1 == schema_2);
}
return false;
}
void Module::unsafeRemoveMethod(const std::string& basename) {
int64_t i = 0;
for (; i < cu_->methods().size(); ++i) {
if ((cu_->methods()[i])->name() == basename) {
break;
}
}
object_->type()->unsafeRemoveMethod(basename);
cu_->unsafeRemoveFunction(i);
}
void Module::unsafeCopyMethod(
const std::string& new_method_name,
const Function& to_be_copied) {
TORCH_CHECK(
!find_method(new_method_name).has_value(),
"Trying to replace existing method.");
const c10::QualifiedName& tobe_copied_name = to_be_copied.qualname();
c10::QualifiedName qualified_method_name(
tobe_copied_name.prefix(), new_method_name);
std::unique_ptr<Function> new_fn = std::make_unique<Function>(
qualified_method_name, to_be_copied.get_code(), to_be_copied.getSchema());
object_->type()->addMethod(new_fn.get());
cu_->register_function(std::move(new_fn));
}
c10::optional<Method> Module::find_method(const std::string& basename) const {
for (const auto& fn : cu_->methods()) {
if (fn->name() == basename) {
return c10::make_optional<Method>(Method(this, fn.get()));
}
}
return c10::nullopt;
}
namespace {
void set_train_recurse(
const c10::intrusive_ptr<c10::ivalue::Object>& obj,
bool on) {
if (auto slot = obj->type()->findAttributeSlot("training")) {
obj->setSlot(*slot, on);
} else {
TORCH_INTERNAL_ASSERT(
false,
"'training' attribute not found. Did you accidentally "
"call .eval() before saving your model?");
}
for (const auto& slot : obj->slots()) {
if (slot.isObject()) {
set_train_recurse(slot.toObject(), on);
}
}
}
void slot_params_recurse(
const c10::intrusive_ptr<c10::ivalue::Object>& obj,
std::vector<at::Tensor>* params) {
for (const auto& slot : obj->slots()) {
if (slot.isTensor()) {
params->emplace_back(slot.toTensor());
} else if (slot.isObject()) {
slot_params_recurse(slot.toObject(), params);
}
}
}
void slot_named_params_recurse(
const c10::intrusive_ptr<c10::ivalue::Object>& obj,
std::map<std::string, at::Tensor>* params,
const std::string& parent_name) {
auto slots = obj->slots();
size_t nslots = slots.size();
for (const auto i : c10::irange(nslots)) {
auto slot = slots[i];
std::string name =
parent_name.size() == 0 ? parent_name : parent_name + ".";
name += obj->type()->getAttributeName(i);
// TODO: Fix this filter. Requires_grad is not the appropriate
// filter of a parameter, but is a temporary hack to help probable
// users of this api. The correct behavior is to filter by the
// obj->type->is_parameter() but this currently always returns
// false on mobile.
if (slot.isTensor() && slot.toTensor().requires_grad()) {
(*params)[name] = slot.toTensor();
} else if (slot.isObject()) {
slot_named_params_recurse(slot.toObject(), params, name);
}
}
}
#if defined(SYMBOLICATE_MOBILE_DEBUG_HANDLE)
std::string getTopModuleTypeName(const Module& m) {
std::string name;
if (m._ivalue()->type() && m._ivalue()->type()->name()) {
name = m._ivalue()->type()->name().value().name();
}
return name;
}
#endif
} // namespace
const std::vector<at::Tensor> Module::parameters() const {
std::vector<at::Tensor> params;
slot_params_recurse(object_, ¶ms);
return params;
}
// Returns a mapping for all attributes that requires_grad=True in a module.
// This behavior differs from full torch script modules. This is a bug,
// but currently there is no way to correctly label parameters in the
// loading of a mobile module. TODO
const std::map<std::string, at::Tensor> Module::named_parameters() const {
std::map<std::string, at::Tensor> params;
const std::string name = "";
slot_named_params_recurse(object_, ¶ms, name);
return params;
}
std::string Module::getModuleHierarchy(const int64_t debug_handle) const {
#if defined(SYMBOLICATE_MOBILE_DEBUG_HANDLE)
return getDebugTable().getModuleHierarchyInfo(
debug_handle, getTopModuleTypeName(*this));
#else
return "";
#endif
}
std::string Module::getCallStack(const int64_t debug_handle) const {
#if defined(SYMBOLICATE_MOBILE_DEBUG_HANDLE)
return getDebugTable().getSourceDebugString(
debug_handle, getTopModuleTypeName(*this));
#else
return "";
#endif
}
// We will continue to support this API for now as this is being relied upon
// for profiling.
// We really need to change this part, so in the next step for profiling support
// for delegates, the first thing will be to rewrite how profiling is done
// for lite interpreter.
std::string Module::get_forward_method_debug_info(int64_t debug_handle) const {
#if defined(SYMBOLICATE_MOBILE_DEBUG_HANDLE)
return getDebugTable().getModuleHierarchyInfo(
debug_handle, getTopModuleTypeName(*this));
#else
return "";
#endif
}
void Module::train(bool on) {
set_train_recurse(object_, on);
}
bool Module::is_training() const {
if (auto slot = object_->type()->findAttributeSlot("training")) {
return object_->getSlot(*slot).toBool();
}
return true;
}
const std::vector<Method> Module::get_methods() const {
std::vector<Method> methods;
for (std::unique_ptr<Function>& fn : cu_->methods()) {
methods.emplace_back(this, fn.get());
}
return methods;
}
Method::Method(const Module* owner, Function* function)
: owner_(owner), function_(function) {}
void Method::run(Stack& stack) const {
auto observer = torch::observerConfig().getModuleObserver();
// NOLINTNEXTLINE(clang-analyzer-security.insecureAPI.rand)
auto instance_key = std::rand();
/* if the metadata dict doesn't contain "model_name", copy the metadata and
set the value of "model_name" as name() */
std::unordered_map<std::string, std::string> copied_metadata =
owner_->getMetadata();
if (observer) {
observer->onEnterRunMethod(instance_key);
}
auto debug_info = std::make_shared<MobileDebugInfo>();
std::string name = copied_metadata["model_name"];
debug_info->setModelName(name);
debug_info->setMethodName(function_->name());
at::DebugInfoGuard guard(at::DebugInfoKind::MOBILE_RUNTIME_INFO, debug_info);
std::string error_message;
auto failure_guard = c10::make_scope_exit([&]() {
if (!observer) {
return;
}
#if defined(SYMBOLICATE_MOBILE_DEBUG_HANDLE)
if (error_message.empty()) {
error_message = owner_->getDebugTable().getSourceDebugString(
function_->getExceptionDebugHandles(), getTopModuleTypeName(*owner_));
}
#endif
observer->onFailRunMethod(
copied_metadata,
function_->name(),
instance_key,
error_message.empty() ? "Unknown exception" : error_message.c_str());
});
try {
stack.insert(stack.begin(), owner_->_ivalue()); // self
function_->run(stack);
if (observer) {
observer->onExitRunMethod(
copied_metadata, function_->name(), instance_key);
}
failure_guard.release();
// This exception must be caught first as it derived from c10::Error
} catch (c10::BackendRuntimeException& e) {
#if defined(SYMBOLICATE_MOBILE_DEBUG_HANDLE)
for (auto handle : function_->getExceptionDebugHandles()) {
e.pushDebugHandle(handle);
}
// symbolicate all handles
auto debug_string = owner_->getDebugTable().getSourceDebugString(
e.getDebugHandles(), getTopModuleTypeName(*owner_));
e.add_context(debug_string);
#endif
error_message = e.what();
TORCH_RETHROW(e);
} catch (c10::Error& error) {
#if defined(SYMBOLICATE_MOBILE_DEBUG_HANDLE)
auto debug_string = owner_->getDebugTable().getSourceDebugString(
function_->getExceptionDebugHandles(), getTopModuleTypeName(*owner_));
error.add_context(debug_string);
#endif
error_message = error.what();
TORCH_RETHROW(error);
}
}
c10::IValue Method::operator()(std::vector<c10::IValue> stack) const {
run(stack);
TORCH_INTERNAL_ASSERT(!stack.empty());
return stack.front();
}
c10::optional<std::string> print_type(const c10::Type& t) {
auto namedType = t.cast<c10::NamedType>();
if (namedType && namedType->name()) {
return namedType->name().value().qualifiedName();
}
if (auto dyn = t.castRaw<c10::DynamicType>()) {
return dyn->fallback()->annotation_str();
}
return c10::nullopt;
}
TORCH_API ModuleInfo get_module_info(const mobile::Module& module) {
ModuleInfo minfo;
minfo.operator_version = module.min_operator_version();
minfo.bytecode_version = module.bytecode_version();
std::vector<std::string> type_name_list;
for (const auto& func_ptr : module.compilation_unit().methods()) {
const auto& function = *func_ptr;
for (int i = 0; i < function.get_code().op_names_.size(); i++) {
const auto& op = function.get_code().op_names_[i];
minfo.opname_to_num_args[mobile::operator_str(op)] =
function.get_code().operator_input_sizes_[i];
}
for (const c10::TypePtr& tp : function.get_code().types_) {
type_name_list.push_back(tp->annotation_str(print_type));
}
minfo.function_names.insert(function.qualname().qualifiedName());
}
c10::TypeParser parser(type_name_list);
parser.parseList();
minfo.type_names = parser.getContainedTypes();
return minfo;
}
} // namespace mobile
} // namespace jit
} // namespace torch
|