1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
|
#include <torch/csrc/jit/mobile/nnc/aot_compiler.h>
#include <ATen/Functions.h>
#include <ATen/NativeFunctions.h>
#include <torch/csrc/jit/backends/backend.h>
#include <torch/csrc/jit/backends/backend_detail.h>
#include <torch/csrc/jit/backends/backend_preprocess.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/constant_propagation.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/passes/frozen_graph_optimizations.h>
#include <torch/csrc/jit/passes/lower_tuples.h>
#include <torch/csrc/jit/passes/peephole.h>
#include <torch/csrc/jit/passes/remove_mutation.h>
#include <torch/csrc/jit/passes/shape_analysis.h>
#include <torch/csrc/jit/passes/symbolic_shape_analysis.h>
#include <torch/csrc/jit/runtime/jit_trace.h>
#include <torch/csrc/jit/tensorexpr/graph_opt.h>
#include <torch/csrc/jit/tensorexpr/ir.h>
#include <torch/csrc/jit/tensorexpr/ir_simplifier.h>
#include <torch/csrc/jit/tensorexpr/kernel.h>
#include <fstream>
using namespace torch::jit;
using namespace torch::jit::tensorexpr;
namespace torch {
namespace jit {
namespace mobile {
namespace nnc {
std::vector<int64_t> getConstSizes(const BufPtr b) {
std::vector<int64_t> r;
for (const auto& dim : b->dims()) {
LongImmPtr imm_dim = to<LongImm>(dim);
// TODO: assert it's actually immediate
int64_t s = imm_dim->value();
r.push_back(s);
}
return r;
}
// Construct input-specs vector from the inputs of the original graph
std::vector<mobile::nnc::InputSpec> toInputSpecs(
const std::shared_ptr<tensorexpr::TensorExprKernel>& kernel) {
const std::shared_ptr<Graph>& g = kernel->graph();
std::vector<mobile::nnc::InputSpec> specs;
// Graph inputs include scalar values for symbolic shapes, for which we
// don't need input specs. These scalar values come last among the graph
// inputs
auto num_inputs =
g->inputs().size() - kernel->getSymbolicShapeInputs().size();
for (int i = 0; i < num_inputs; i++) {
auto v = g->inputs()[i];
const auto& t = v->type();
mobile::nnc::InputSpec spec;
TORCH_CHECK(t->kind() == TypeKind::TensorType, "Unsupported input type");
const auto& tt = t->cast<TensorType>();
spec.sizes_ = {};
auto sizes_vec = *tt->sizes().sizes();
for (auto s : sizes_vec) {
spec.sizes_.push_back(s ? *s : 0);
}
spec.dtype_ = *tt->scalarType();
specs.emplace_back(std::move(spec));
}
return specs;
}
// Locate symbolic shapes in shapes of the inputs.
//
// For each symbolic shape we're trying to find the input from which it can be
// extracted and the dimension index in that input.
// For instance, if we have
// graph(%x : Float(SS(-1), 10), %y : Long(20, SS(-2), %ss_1 : int, %ss_2 : int)
// then we would need to find locations of two symbolic shapes: SS(-1) and
// SS(-2). The first one corresponds to the first dimension of the first input,
// the second one corresponds to the second dimension of the second input,
// so we will return {{0, 0}, {1, 1}}.
//
// If a symbolic shape cannot be found among dimensions of inputs, we
// will throw an error (this situation is possible when symbolic shape
// corresponds to the size of an intermediate - we don't support this
// case here yet).
//
// If a symbolic shape can be found in several different positions, we
// return the first one we find (TODO: maybe we should return all and
// verify that they all match at runtime).
std::vector<SymbolicShapePosition> findSymbolicShapePositions(
std::shared_ptr<tensorexpr::TensorExprKernel> kernel) {
std::vector<SymbolicShapePosition> res;
for (int64_t sym_idx : kernel->getSymbolicShapeInputs()) {
bool found = false;
for (int64_t input_idx : c10::irange(kernel->graph()->inputs().size())) {
auto input = kernel->graph()->inputs()[input_idx];
if (!input->type()->cast<TensorType>()) {
continue;
}
auto tt = input->type()->expect<TensorType>();
if (!tt->symbolic_sizes().sizes()) {
continue;
}
std::vector<at::ShapeSymbol> shape_vec = *tt->symbolic_sizes().sizes();
for (int64_t dim_idx : c10::irange(shape_vec.size())) {
if (shape_vec[dim_idx].value() == sym_idx) {
res.emplace_back(input_idx, dim_idx);
found = true;
break;
}
}
if (found) {
break;
}
}
TORCH_CHECK(
found, "Could not locate a symbolic shape among input tensor shapes");
}
return res;
}
std::unique_ptr<Function> compileMethod(
std::shared_ptr<tensorexpr::TensorExprKernel> kernel,
const std::string& method_name,
const std::vector<std::vector<int64_t>>& sizes,
const std::vector<at::ScalarType>& types) {
auto func = std::make_unique<Function>();
func->set_name(method_name);
func->set_input_specs(toInputSpecs(kernel));
auto params = c10::impl::GenericList(c10::AnyType::get());
auto const_descriptors = kernel->getConstantDescriptors();
for (const auto& cd : const_descriptors) {
auto sizes = getConstSizes(cd.buf);
if (!cd.node) {
// sizes.empty() needs to be handled as sizes can be empty for Scalar
// Tensors
at::Tensor const_tensor = !sizes.empty()
? at::from_blob(cd.ptr, sizes).clone()
: at::native::wrapped_scalar_tensor(*static_cast<double*>(cd.ptr));
params.push_back(const_tensor);
} else {
params.emplace_back(toIValue(cd.node->output()));
}
}
func->set_parameters(params);
MemoryPlan plan;
plan.buffer_sizes_ = {}; // temp_sizes_;
// TODO: implement prealloc optimization and fill in temp_sizes
func->set_memory_plan(plan);
int64_t n_inputs = kernel->graph()->inputs().size();
int64_t n_outputs = kernel->graph()->outputs().size();
std::vector<OutputSpec> out_spec;
for (int64_t idx = n_inputs; idx < n_inputs + n_outputs; idx++) {
const auto& ba = kernel->getBufferArgs()[idx];
OutputSpec output;
output.sizes_ = getConstSizes(ba.buf());
// TODO: assert the output is a buffer and not a scalar
output.dtype_ = ba.buf()->dtype().scalar_type();
if (isQIntType(output.dtype_)) {
// Supporting only static qscale/qzero
output.qscale_ =
to<DoubleImm>(torch::jit::tensorexpr::IRSimplifier::simplify(
ba.buf()->qscale()))
->value();
output.qzero_ =
to<LongImm>(
torch::jit::tensorexpr::IRSimplifier::simplify(ba.buf()->qzero()))
->value();
}
out_spec.push_back(output);
}
func->set_output_specs(out_spec);
func->set_sym_shape_positions(findSymbolicShapePositions(kernel));
return func;
}
std::pair<std::unique_ptr<Function>, const std::string> aotCompile(
const std::string& method_name,
std::shared_ptr<Graph>& g,
const std::vector<std::vector<int64_t>>& sizes,
const std::vector<at::ScalarType>& types,
const std::string& kernel_func_name,
const std::vector<int64_t>& symbolic_ind) {
GRAPH_DEBUG("Input sizes ", sizes);
GRAPH_DEBUG("Input types ", types);
GRAPH_DEBUG("Method name ", method_name);
GRAPH_DEBUG("Kernel func name ", kernel_func_name);
GRAPH_DEBUG("Symbolic indices ", symbolic_ind);
std::shared_ptr<tensorexpr::TensorExprKernel> kernel;
std::vector<torch::jit::StrideInput> stride_desc = {
torch::jit::StrideInput::TENSOR_CONT};
std::unordered_map<
const torch::jit::Value*,
std::vector<torch::jit::StrideInput>>
symbolic_strides;
if (!symbolic_ind.empty()) {
for (auto i : g->inputs()) {
symbolic_strides[i] = stride_desc;
}
for (auto o : g->outputs()) {
symbolic_strides[o] = stride_desc;
}
}
kernel = std::make_shared<tensorexpr::TensorExprKernel>(TensorExprKernel(
g, kernel_func_name, {}, symbolic_ind, false, symbolic_strides));
const std::string compiled_assembly = kernel->getCodeText();
auto func = compileMethod(kernel, method_name, sizes, types);
return std::make_pair(std::move(func), compiled_assembly);
}
void writeOutputLlvmAssembly(
const std::string& asm_code,
const std::string& output_llvm_file_name) {
std::ofstream output(output_llvm_file_name);
output << asm_code;
GRAPH_DEBUG(
"The compiled llvm assembly code was saved to ", output_llvm_file_name);
}
std::vector<std::string> split(
char separator,
const std::string& string,
bool ignore_empty = true) {
std::vector<std::string> pieces;
std::stringstream ss(string);
std::string item;
while (getline(ss, item, separator)) {
if (!ignore_empty || !item.empty()) {
pieces.push_back(std::move(item));
}
}
return pieces;
}
std::vector<std::vector<int64_t>> parseInputShapes(
const std::string& input_dims_s) {
std::vector<std::string> input_dims_list = split(';', input_dims_s);
std::vector<std::vector<int64_t>> inputs;
for (const auto& input_dims_item : input_dims_list) {
auto input_dims_str = split(',', input_dims_item);
std::vector<int64_t> input_dims;
input_dims.reserve(input_dims_str.size());
for (const auto& s : input_dims_str) {
input_dims.push_back(c10::stoi(s));
}
inputs.push_back(input_dims);
}
return inputs;
}
std::vector<at::ScalarType> parseInputTypes(
const std::string& input_types_str) {
std::vector<std::string> inputTypes = split(';', input_types_str);
std::vector<at::ScalarType> scalarTypes;
for (const auto& inputType : inputTypes) {
at::ScalarType scalarType;
if (inputType == "float") {
scalarType = at::ScalarType::Float;
} else if (inputType == "uint8") {
scalarType = at::ScalarType::Byte;
} else if (inputType == "int64") {
scalarType = at::ScalarType::Long;
} else {
CAFFE_THROW("Unsupported input type: ", inputType);
}
scalarTypes.push_back(scalarType);
}
return scalarTypes;
}
std::vector<at::MemoryFormat> parseInputMemoryFormats(
const std::string& input_memory_format_str) {
std::vector<std::string> memFormatsStr = split(';', input_memory_format_str);
std::vector<at::MemoryFormat> memFormats;
for (const auto& memFormatStr : memFormatsStr) {
at::MemoryFormat memFormat;
if (memFormatStr == "contiguous") {
memFormat = at::MemoryFormat::Contiguous;
} else if (memFormatStr == "channels_last") {
memFormat = at::MemoryFormat::ChannelsLast;
} else {
CAFFE_THROW("Unsupported memory format: ", memFormatStr);
}
memFormats.push_back(memFormat);
}
return memFormats;
}
std::vector<int64_t> parseInputDynamicShapes(
const std::string& dynamic_dims_s) {
std::vector<std::string> dynamic_dims_list = split(',', dynamic_dims_s);
std::vector<int64_t> dynamic_dims;
dynamic_dims.reserve(dynamic_dims_list.size());
for (const auto& dim : dynamic_dims_list) {
dynamic_dims.push_back(c10::stoi(dim));
}
return dynamic_dims;
}
std::string getNncKernelId(
const std::string& model_name,
const std::string& model_version,
const std::string& method_name) {
// TODO: calculate the version_token.
const std::string version_token = "VERTOKEN";
return model_name + ":" + model_version + ":" + method_name + ":" +
version_token;
}
std::string getNncKernelFuncName(
const std::string& model_name,
const std::string& model_version,
const std::string& method_name) {
return "nnc_" + model_name + "_" + model_version + "_" + method_name;
}
// Preprocess the graph and returns the processed graph and
// symbolic values if dynamic input shapes are specified
std::pair<std::shared_ptr<Graph>, std::vector<int64_t>> preprocessGraphPasses(
std::shared_ptr<Graph>& graph,
const std::vector<c10::optional<at::Tensor>>& example_inputs,
const std::vector<int64_t>& dynamic_sizes) {
GRAPH_DEBUG("Before preprocessing graph passes: ", *graph);
torch::jit::RemoveTensorMutation(graph);
torch::jit::EliminateDeadCode(graph->block());
graph = torch::jit::tensorexpr::removeUnusedSelfArgument(graph);
torch::jit::tensorexpr::annotateInputShapes(graph, example_inputs);
torch::jit::OptimizeFrozenGraph(graph, true);
torch::jit::PropagateShapesOnGraph(graph);
torch::jit::PeepholeOptimize(graph, false);
torch::jit::ConstantPropagation(graph);
torch::jit::PropagateShapesOnGraph(graph);
torch::jit::PeepholeOptimize(graph, false);
torch::jit::ConstantPropagation(graph);
tensorexpr::removeUnusedSelfArgument(graph);
std::vector<at::IValue> example_values;
example_values.reserve(example_inputs.size());
for (auto example_input : example_inputs) {
example_values.emplace_back(*example_input);
}
graph = TraceGraph(graph, example_values);
// TODO: Remove annotateInputShapes pass when TraceGraph can also capture
// input shapes
tensorexpr::annotateInputShapes(graph, example_inputs);
RemoveListMutation(graph);
RemoveTensorMutation(graph);
EliminateDeadCode(graph);
LowerAllTuples(graph);
auto sym_val =
torch::jit::tensorexpr::makeShapesSymbolic(graph, dynamic_sizes);
GRAPH_DEBUG("After preprocessing graph passes: ", *graph);
return std::make_pair(graph, sym_val);
}
std::vector<c10::optional<at::Tensor>> generateExampleInputs(
const std::vector<std::vector<int64_t>>& inputShapes,
const std::vector<at::ScalarType>& inputTypes,
const std::vector<at::MemoryFormat>& inputMemoryFormats) {
std::vector<c10::optional<at::Tensor>> example_inputs;
example_inputs.reserve(inputShapes.size());
for (int i = 0; i < inputShapes.size(); ++i) {
const auto dtype = at::dtype(inputTypes[i]);
const auto memory_format = inputMemoryFormats[i];
example_inputs.emplace_back(
at::rand(inputShapes[i]).to(dtype).contiguous(memory_format));
}
return example_inputs;
}
c10::IValue preprocess(
const torch::jit::Module& mod,
const c10::Dict<c10::IValue, c10::IValue>& compile_spec,
const torch::jit::BackendDebugHandleGenerator& generate_debug_handles) {
torch::jit::mobile::nnc::CompilationUnit cu;
for (const auto& kv : compile_spec) {
GRAPH_DEBUG("Key: ", kv.key());
GRAPH_DEBUG("Value: ", kv.value());
std::string method_name = *(kv.key().toString());
GRAPH_DEBUG("Method name: ", method_name);
auto method_spec = kv.value().toGenericDict();
std::string model_name = *method_spec.at("model_name").toString();
std::string model_version = *method_spec.at("model_version").toString();
std::string asmfile_name = *method_spec.at("asmfile").toString();
GRAPH_DEBUG("Model name: ", model_name);
GRAPH_DEBUG("Model version: ", model_version);
GRAPH_DEBUG("Asm file name: ", asmfile_name);
auto method = mod.get_method(method_name);
auto graph = toGraphFunction(method.function()).graph()->copy();
auto sizes = parseInputShapes(*method_spec.at("sizes").toString());
auto types = parseInputTypes(*method_spec.at("types").toString());
auto dynamic_sizes =
parseInputDynamicShapes(*method_spec.at("dynamic_sizes").toString());
std::string memory_formats_str = method_spec.contains("memory_formats")
? (*method_spec.at("memory_formats").toString()).string()
: "";
auto memory_formats = memory_formats_str.empty()
? std::vector<at::MemoryFormat>(
sizes.size(), at::MemoryFormat::Contiguous)
: parseInputMemoryFormats(memory_formats_str);
auto example_inputs = generateExampleInputs(sizes, types, memory_formats);
auto preprocessed =
preprocessGraphPasses(graph, example_inputs, dynamic_sizes);
auto kernel_func_name =
getNncKernelFuncName(model_name, model_version, method_name);
auto processed_graph = preprocessed.first;
auto sym_values = preprocessed.second;
auto compiled = torch::jit::mobile::nnc::aotCompile(
method_name,
processed_graph,
sizes,
types,
kernel_func_name,
sym_values);
writeOutputLlvmAssembly(compiled.second, asmfile_name);
auto func = std::move(compiled.first);
func->set_nnc_kernel_id(
getNncKernelId(model_name, model_version, method_name));
cu.register_function(std::move(func));
}
return cu.serialize();
}
// TODO(mvz): temporarily disable NNC backend in mobile builds.
// static auto reg = torch::jit::backend_preprocess_register("nnc", preprocess);
} // namespace nnc
} // namespace mobile
} // namespace jit
} // namespace torch
|