1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
|
#include <torch/csrc/jit/mobile/nnc/context.h>
#include <ATen/Functions.h>
#include <ATen/core/functional.h>
#include <c10/core/CPUAllocator.h>
#include <c10/util/irange.h>
#include <torch/csrc/jit/mobile/nnc/registry.h>
namespace torch {
namespace jit {
namespace mobile {
namespace nnc {
constexpr int64_t kProducedNNCFileFormatVersion = 0x1L;
namespace {
c10::IValue Tup(std::initializer_list<c10::IValue> ivalues) {
return c10::ivalue::Tuple::create(ivalues);
}
c10::IValue Tup(std::vector<c10::IValue>&& ivalues) {
return c10::ivalue::Tuple::create(ivalues);
}
} // namespace
InputSpec::InputSpec(const c10::IValue& value) {
auto dict = value.toGenericDict();
sizes_ = dict.at("sizes").toIntVector();
dtype_ = dict.at("dtype").toScalarType();
}
c10::IValue InputSpec::serialize() const {
c10::Dict<c10::IValue, c10::IValue> dict(
at::StringType::get(), at::AnyType::get());
dict.insert("sizes", sizes_);
dict.insert("dtype", dtype_);
return dict;
}
bool InputSpec::validate(const at::Tensor& input) const {
if (sizes_.size() != input.sizes().size() || input.scalar_type() != dtype_) {
return false;
}
auto spec_sizes = sizes_;
for (int i = 0; i < spec_sizes.size(); i++) {
// InputSpec size 0 means that the dimension is dynamic
if (spec_sizes[i] != 0 && spec_sizes[i] != input.sizes()[i]) {
return false;
}
}
return true;
}
OutputSpec::OutputSpec(const c10::IValue& value) {
auto dict = value.toGenericDict();
sizes_ = dict.at("sizes").toIntVector();
dtype_ = dict.at("dtype").toScalarType();
if (dict.contains("qscale")) {
qscale_ = dict.at("qscale").toDouble();
}
if (dict.contains("qzero")) {
qzero_ = dict.at("qzero").toInt();
}
}
c10::IValue OutputSpec::serialize() const {
c10::Dict<c10::IValue, c10::IValue> dict(
at::StringType::get(), at::AnyType::get());
dict.insert("sizes", sizes_);
dict.insert("dtype", dtype_);
if (qscale_) {
dict.insert("qscale", *qscale_);
}
if (qzero_) {
dict.insert("qzero", *qzero_);
}
return dict;
}
at::Tensor OutputSpec::allocate() const {
if (isQIntType(dtype_)) {
TORCH_CHECK(
qscale_ && qzero_,
"Quantized output tensor must have qscale_ and qzero_");
return at::_empty_affine_quantized(
sizes_,
at::TensorOptions()
.dtype(dtype_)
.layout(at::kStrided)
.device(at::kCPU)
.requires_grad(false),
*qscale_,
*qzero_);
}
return at::empty(
sizes_,
at::TensorOptions()
.dtype(dtype_)
.layout(at::kStrided)
.device(at::kCPU)
.requires_grad(false));
}
MemoryPlan::MemoryPlan(const c10::IValue& value) {
auto dict = value.toGenericDict();
buffer_sizes_ = dict.at("buffer_sizes").toIntVector();
}
c10::IValue MemoryPlan::serialize() const {
c10::Dict<c10::IValue, c10::IValue> dict(
at::StringType::get(), at::AnyType::get());
dict.insert("buffer_sizes", buffer_sizes_);
return dict;
}
void MemoryPlan::allocate(ExecutionState* state) const {
auto& allocations = state->preallocations_;
allocations.clear();
allocations.reserve(buffer_sizes_.size());
for (int64_t buffer_size : buffer_sizes_) {
at::DataPtr buffer = c10::GetCPUAllocator()->allocate(buffer_size);
allocations.emplace_back(std::move(buffer));
}
}
Function::Function(const c10::IValue& value) {
auto dict = value.toGenericDict();
name_ = c10::QualifiedName(dict.at("name").toStringRef());
nnc_kernel_id_ = dict.at("nnc_kernel_id").toStringRef();
parameters_ = dict.at("parameters").toList();
// input_specs_
for (const auto& input_value :
dict.at("input_specs").toTupleRef().elements()) {
input_specs_.emplace_back(input_value);
}
// output_specs_
for (const auto& output_value :
dict.at("output_specs").toTupleRef().elements()) {
output_specs_.emplace_back(output_value);
}
// memory_plan_
memory_plan_ = MemoryPlan(dict.at("memory_plan"));
// symbolic shape positions
for (const auto& sym_shape_pos :
dict.at("sym_shape_pos").toTupleRef().elements()) {
auto sym_shape_elements = sym_shape_pos.toTupleRef().elements();
sym_shape_positions_.emplace_back(
sym_shape_elements[0].toInt(), sym_shape_elements[1].toInt());
}
}
c10::IValue Function::serialize() const {
c10::Dict<c10::IValue, c10::IValue> dict(
at::StringType::get(), at::AnyType::get());
dict.insert("name", name_.qualifiedName());
dict.insert("nnc_kernel_id", nnc_kernel_id_);
// TODO: should serialize parameters with Module instead of with each Method.
// And ideally the parameters should be shared between the compiled model
// and the original model if we can serialize both in the same model file.
dict.insert("parameters", parameters_);
// input_specs_
std::vector<c10::IValue> input_specs;
for (const auto& input_spec : input_specs_) {
input_specs.emplace_back(input_spec.serialize());
}
dict.insert("input_specs", Tup(std::move(input_specs)));
// output_specs_
std::vector<c10::IValue> output_specs;
for (const auto& output_spec : output_specs_) {
output_specs.emplace_back(output_spec.serialize());
}
dict.insert("output_specs", Tup(std::move(output_specs)));
// memory_plan_
dict.insert("memory_plan", memory_plan_.serialize());
// sym_shape_positions_
std::vector<c10::IValue> sym_shape_pos_vec;
for (const auto& sym_shape_pos : sym_shape_positions_) {
sym_shape_pos_vec.emplace_back(
Tup({sym_shape_pos.input_idx_, sym_shape_pos.dim_idx_}));
}
dict.insert("sym_shape_pos", Tup(std::move(sym_shape_pos_vec)));
return dict;
}
void Function::init_execution_state() const {
if (execution_state_.get() != nullptr) {
return;
}
ExecutionState state;
memory_plan_.allocate(&state);
// The arguments vector consists of 5 sections: inputs, symbolic shapes,
// outputs, parameters and buffers.
auto input_args = input_specs_.size();
auto sym_shape_args = sym_shape_positions_.size();
auto output_args = output_specs_.size();
auto param_args = parameters_.size();
auto buffer_args = state.preallocations_.size();
auto& arguments = state.arguments_;
arguments.reserve(
input_args + sym_shape_args + output_args + param_args + buffer_args);
// Keep empty slots to fill in inputs/outputs pointers at execution time.
arguments.resize(input_args + sym_shape_args + output_args);
// Fill in parameters as untyped raw pointers.
// The underlying storage of the parameters should be owned by `parameters_`,
// which should be alive when `execution_state_` is being used.
for (const auto& param : parameters_) {
const c10::IValue& ivalue = (c10::IValue)param;
if (ivalue.isTensor()) {
arguments.emplace_back(ivalue.toTensor().data_ptr());
} else if (torch::isCustomClass(ivalue)) {
arguments.emplace_back(ivalue.toObjectRef().getSlot(0).toCapsule().get());
} else {
TORCH_CHECK(false, "Invalid parameter: ", ivalue);
}
}
// Fill in preallocated buffer pointers.
for (const auto& preallocation : state.preallocations_) {
arguments.emplace_back(preallocation.get());
}
execution_state_ = std::make_unique<ExecutionState>(std::move(state));
}
c10::impl::GenericList Function::run(
const c10::impl::GenericList& inputs) const {
TORCH_CHECK(
registry::has_nnc_kernel(nnc_kernel_id_),
"Cannot find NNC kernel: ",
nnc_kernel_id_);
init_execution_state();
std::vector<void*>& args = execution_state_->arguments_;
// Fill in input tensors.
TORCH_CHECK(
input_specs_.size() == inputs.size(),
"Input size doesn't match the spec, expect: ",
input_specs_.size(),
" actual: ",
inputs.size());
std::vector<int64_t> scalar_values;
int offset = 0;
for (const auto i : c10::irange(inputs.size())) {
const c10::IValue& input = inputs[i];
const auto& spec = input_specs_[i];
const auto& input_tensor = input.toTensor();
TORCH_CHECK(spec.validate(input_tensor), "Invalid input at pos: ", i);
args[i] = input_tensor.data_ptr();
}
offset += inputs.size();
scalar_values.reserve(sym_shape_positions_.size());
for (const auto i : c10::irange(sym_shape_positions_.size())) {
const auto& sym_shape_pos = sym_shape_positions_[i];
const c10::IValue& input = inputs[sym_shape_pos.input_idx_];
auto dim = input.toTensor().size(sym_shape_pos.dim_idx_);
scalar_values.push_back(dim);
args[i + offset] = &scalar_values[scalar_values.size() - 1];
}
offset += sym_shape_positions_.size();
// Preallocate and fill in output tensors.
c10::List<at::Tensor> outputs;
outputs.reserve(output_specs_.size());
for (const auto i : c10::irange(output_specs_.size())) {
at::Tensor output = output_specs_[i].allocate();
outputs.emplace_back(output);
args[i + offset] = output.data_ptr();
}
// TODO: check consistency, e.g.: code version, input shape and compiled
// shape, etc.
auto kernel = registry::get_nnc_kernel(nnc_kernel_id_);
kernel->execute(args.data());
return c10::impl::toList(outputs);
}
CompilationUnit::CompilationUnit(const c10::IValue& value) {
const auto& root = value.toTupleRef().elements();
const auto& functions = root[1].toTupleRef().elements();
for (const auto& function : functions) {
register_function(std::make_unique<Function>(function));
}
}
c10::IValue CompilationUnit::serialize() const {
auto functions =
c10::fmap(functions_, [](decltype(functions_)::const_reference func) {
return func.second->serialize();
});
return Tup({kProducedNNCFileFormatVersion, Tup(std::move(functions))});
}
c10::impl::GenericList CompilationUnit::run(
const c10::QualifiedName& name,
const c10::impl::GenericList& inputs) const {
Function* func = find_function(name);
TORCH_CHECK(
func != nullptr, "Function '", name.qualifiedName(), "' is not defined.");
return func->run(inputs);
}
void CompilationUnit::register_function(std::unique_ptr<Function> fn) {
TORCH_CHECK(
0 == functions_.count(fn->name()),
"method '",
fn->name().qualifiedName(),
"' already defined.");
const auto& name = fn->name();
functions_.emplace(name, std::move(fn));
}
Function* CompilationUnit::find_function(const c10::QualifiedName& name) const {
auto it = functions_.find(name);
if (it == functions_.end()) {
return nullptr;
}
return it->second.get();
}
} // namespace nnc
} // namespace mobile
} // namespace jit
} // namespace torch
|