1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
|
#include <ATen/core/ivalue.h>
#include <torch/csrc/jit/mobile/code.h>
#include <torch/csrc/jit/mobile/parse_bytecode.h>
#include <torch/csrc/jit/mobile/type_parser.h>
#include <torch/csrc/jit/mobile/upgrader_mobile.h>
#include <torch/csrc/jit/runtime/instruction.h>
#include <torch/csrc/jit/serialization/import_export_constants.h>
#include <torch/csrc/jit/serialization/import_export_functions.h>
#include <torch/custom_class_detail.h>
namespace torch {
namespace jit {
OpCode parseOpCode(const char* str);
using c10::IValue;
IValue expect_field(
c10::ivalue::TupleElements& elements,
const std::string& expected_name,
size_t entry) {
auto row = std::move(elements.at(entry)).toTuple();
TORCH_INTERNAL_ASSERT(
row->elements().at(0).toStringRef() == expected_name,
"Expected ",
expected_name,
" found ",
row->elements().at(0).toStringRef());
return std::move(row->elements().at(1));
}
namespace mobile {
namespace {
#define COUNT_OPCODE(_, _a) 1 +
constexpr size_t numOpcodes = FORALL_OPCODES(COUNT_OPCODE) 0;
#undef COUNT_OPCODE
// Pickled strings are memoized, so we can cache a mapping from
// pointers to parsed OpCodes to speed up parsing.
class OpCodeCache {
private:
// We store as void* to emphasize that we care only about the
// address and should not be dereferencing these pointers.
std::array<const void*, numOpcodes> keys_{};
std::array<OpCode, numOpcodes> values_{};
size_t usedEntries_ = 0;
public:
OpCodeCache() {
memset(keys_.data(), 0, keys_.size() * sizeof(keys_[0]));
}
OpCode parse(const c10::ivalue::ConstantString& s) {
const auto endIt = keys_.begin() + usedEntries_;
auto it = std::find_if(
keys_.begin(), endIt, [&s](const void* k) { return k == &s; });
if (it == endIt) {
OpCode result = parseOpCode(s.string().c_str());
if (usedEntries_ < numOpcodes) {
keys_[usedEntries_] = &s;
values_[usedEntries_++] = result;
}
return result;
}
// NOTE: I tried implementing the transpose heuristic here to
// speed up the search, but it removed the benefit of this cache.
return values_[it - keys_.begin()];
}
};
} // namespace
void applyUpgrader(mobile::Function* function, uint64_t operator_version) {
Code& code = function->get_code();
auto& operator_version_map = getOperatorVersionMapForMobile();
for (size_t i = 0; i < code.instructions_.size(); i++) {
Instruction& inst = code.instructions_[i];
if (inst.op == OpCode::OP) {
std::string op_name = code.op_names_[inst.X].name;
std::string operator_name = code.op_names_[inst.X].name +
(code.op_names_[inst.X].overload_name.empty()
? ""
: "." + code.op_names_[inst.X].overload_name);
auto it = operator_version_map.find(operator_name);
// Find out if there is an upgrader for this operator
if (it != operator_version_map.end()) {
auto upgrader_list = it->second;
// Loop all upgraders for this operator, and find out if there exists a
// valid upgrader. Use iteration here instead of other faster search
// algorithm, because the number of upgrader per operator will be just a
// few and tend to keep the code light-weight from binary size concern.
for (const auto& upgrader : upgrader_list) {
if (operator_version <= upgrader.max_version &&
operator_version >= upgrader.min_version) {
// If there exists a valid upgrader, change the instruction OP to
// CALL, and the index will point to the according upgrader
// function. All upgrader function are available in
// function->get_code().functions_. It's a vector of function
// pointer and they are initialized in the same order as the global
// vector kUpgraderBytecode.
// Instruction new_inst = inst;
// new_inst.op = OpCode::CALL;
// new_inst.X = upgrader.index;
// code->instructions_[i] = new_inst;
TORCH_CHECK(
upgrader.index < code.functions_.size(),
"upgrader index is, ",
upgrader.index,
" and it's larger than the upgrader function list length ",
code.functions_.size());
inst.op = OpCode::CALL;
inst.X = upgrader.index;
}
}
}
}
}
}
void parseInstructions(
const std::string& function_name,
c10::ivalue::TupleElements&& ins_list,
c10::ivalue::TupleElements& debug_handles_m_tuple,
mobile::Function* function) {
c10::List<int64_t> debug_handles_list;
if (!debug_handles_m_tuple.empty()) {
const std::string& debug_info_function_name =
debug_handles_m_tuple[0].toStringRef();
TORCH_CHECK(
debug_info_function_name == function_name,
"The function names in the bytecode table and the debug info table do not match.");
IValue& debug_handles_table = debug_handles_m_tuple[1];
auto debugHandlesTableElements =
std::move(*std::move(debug_handles_table).toTuple()).elements();
debug_handles_list = (expect_field(
debugHandlesTableElements,
"function_debug_handles",
BYTECODE_INDEX_MODULE_DEBUG_HANDLES)
.toTupleRef()
.elements())[0]
.toIntList();
TORCH_CHECK(
debug_handles_list.size() == ins_list.size(),
"The numbers of instructions and debug handles strings do not match.");
}
// NOTE: this won't perform particularly well if the ins_list IValue
// didn't come from unpickler and thus have its strings
// interned. Consider adding a flag to bypass the cache if that
// becomes an important use case.
OpCodeCache opCodeCache;
for (const auto j : c10::irange(ins_list.size())) {
auto ins_tuple = std::move(ins_list[j]).toTuple();
c10::ArrayRef<IValue> ins_item = ins_tuple->elements();
TORCH_CHECK(
ins_item.size() == 3,
"There should be three parts in an instruction. The function name is ",
function_name);
OpCode op_code = opCodeCache.parse(*ins_item[0].toString());
int X = ins_item[1].toInt();
int N = ins_item[2].toInt();
if (!debug_handles_list.empty()) {
int64_t debug_handle = debug_handles_list[j];
function->append_instruction(op_code, X, N, debug_handle);
} else {
function->append_instruction(op_code, X, N);
}
}
}
void parseConstants(
const c10::ivalue::TupleElements& consts_list,
mobile::Function* function) {
for (const auto& constant : consts_list) {
function->append_constant(constant);
}
}
void parseTypes(
const c10::ivalue::TupleElements& types_list,
mobile::Function* function) {
std::vector<std::string> types_string_list;
types_string_list.resize(types_list.size());
for (size_t i = 0; i < types_list.size(); i++) {
types_string_list[i] = types_list[i].toStringRef();
}
std::vector<c10::TypePtr> types_ptr_list = c10::parseType(types_string_list);
for (auto& type_ptr : types_ptr_list) {
function->append_type(type_ptr);
}
}
void parseRegisterSize(size_t rsize, mobile::Function* function) {
function->set_register_size(rsize);
}
} // namespace mobile
} // namespace jit
} // namespace torch
|