1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
|
#include <ATen/ScalarOps.h>
#include <torch/csrc/jit/mobile/promoted_prim_ops.h>
namespace torch {
namespace jit {
void tupleIndex(Stack& stack) {
int64_t index = pop(stack).toInt();
auto tuple = pop(stack).toTuple();
auto norm_index = normalizeIndex(index, tuple->elements().size());
if (norm_index < 0 ||
norm_index >= static_cast<int64_t>(tuple->elements().size())) {
throw std::out_of_range("Tuple list index out of range");
}
stack.emplace_back(tuple->elements()[norm_index]);
}
void raiseException(Stack& stack) {
// this kernel supports RaiseException with only one argument: the error
// DEPRECATED from bytecode_version 8;
// Please do not make any changes to this to support BC
throw JITException(pop(stack).toStringRef());
}
void raiseExceptionWithMessage(Stack& stack) {
// this kernel supports RaiseException with only two arguments: the error and
// the message Please make changes only to this kernel
c10::optional<std::string> qualified_class_name =
pop(stack).toOptional<std::string>();
std::string message;
pop(stack, message);
throw JITException(message, qualified_class_name);
}
void is(Stack& stack) {
IValue self, obj;
pop(stack, self, obj);
push(stack, self.is(obj));
}
void unInitialized(Stack& stack) {
push(stack, IValue::uninitialized());
}
void isNot(Stack& stack) {
IValue self, obj;
pop(stack, self, obj);
push(stack, !self.is(obj));
}
void aten_format(Stack& stack) {
size_t num_inputs = pop(stack).toInt();
format(stack, num_inputs);
}
void size(Stack& stack) {
auto t = std::move(pop(stack)).toTensor();
pack(stack, t.sizes().vec());
}
void sym_size(Stack& stack) {
auto t = std::move(pop(stack)).toTensor();
pack(stack, t.sym_sizes().vec());
}
void sym_size_int(Stack& stack) {
auto dim = pop(stack).toInt();
auto t = pop(stack).toTensor();
push(stack, t.sym_sizes()[dim]);
}
void sym_stride_int(Stack& stack) {
auto dim = pop(stack).toInt();
auto t = pop(stack).toTensor();
push(stack, t.sym_strides()[dim]);
}
void sym_numel(Stack& stack) {
auto t = std::move(pop(stack)).toTensor();
push(stack, t.sym_numel());
}
void sym_storage_offset(Stack& stack) {
auto t = std::move(pop(stack)).toTensor();
push(stack, t.sym_storage_offset());
}
void sym_stride(Stack& stack) {
auto t = std::move(pop(stack)).toTensor();
pack(stack, t.sym_strides().vec());
}
void device(Stack& stack) {
push(stack, pop(stack).toTensor().device());
}
void dtype(Stack& stack) {
at::Tensor a;
pop(stack, a);
push(stack, static_cast<int64_t>(a.scalar_type()));
}
void layout(Stack& stack) {
push(stack, pop(stack).toTensor().layout());
}
void toPrimDType(Stack& stack) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
bool non_blocking;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
bool copy;
pop(stack, non_blocking, copy);
c10::optional<at::ScalarType> scalarType =
pop(stack).toOptional<at::ScalarType>();
c10::optional<c10::Device> device = c10::nullopt;
at::Tensor self = pop(stack).toTensor();
push(stack, to_dispatch(self, device, scalarType, non_blocking, copy));
}
void dim(Stack& stack) {
at::Tensor arg = pop(stack).toTensor();
push(stack, arg.dim());
}
void _not(Stack& stack) {
push(stack, !pop(stack).toBool());
}
void boolTensor(Stack& stack) {
at::Tensor a;
pop(stack, a);
push(stack, at::native::is_nonzero(a));
}
void toList(Stack& stack) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int elem_ty_val;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int dim_val;
at::Tensor t;
pop(stack, elem_ty_val);
pop(stack, dim_val);
pop(stack, t);
// If the Tensor is not on the CPU, transfer it.
if (!t.device().is_cpu()) {
t = t.cpu();
}
// Rebuild the output type using elem_ty_val and dim_val. Start
// with the element type corresponding to elem_ty_val.
at::TypePtr out_ty;
if (elem_ty_val == 0) {
out_ty = at::IntType::get();
} else if (elem_ty_val == 1) {
out_ty = at::FloatType::get();
} else if (elem_ty_val == 2) {
out_ty = at::BoolType::get();
} else if (elem_ty_val == 3) {
out_ty = at::ComplexType::get();
} else {
TORCH_CHECK(
false,
"Unsupported element type for tolist; only int, float, complex and bool are supported");
}
// Check that type of the Tensor matches that of the annotation.
// Make an exception for the case in which the annotated type is
// float/complex and the Tensor data type is also float/complex;
// the elements will be casted to double/c10::complex<double>
// later.
TORCH_CHECK(
(out_ty == at::FloatType::get() && t.is_floating_point()) ||
(out_ty == at::ComplexType::get() && t.is_complex()) ||
tryScalarTypeFromJitType(*out_ty) == t.scalar_type(),
"Output annotation element type and runtime tensor element type must match for tolist()");
// Check that the dimension of the Tensor matches that of the
// annotation.
TORCH_CHECK(
dim_val == t.dim(),
"Output annotation list dimension and runtime tensor dimension must match for tolist()");
// Wrap out_ty in a ListType dim times.
for (const auto i : c10::irange(dim_val)) {
(void)i; // Suppress unused variable warning
out_ty = at::ListType::create(out_ty);
}
int64_t dim = t.dim();
auto sizes = t.sizes();
auto strides = t.strides();
size_t element_size = t.element_size();
char* data = static_cast<char*>(t.data_ptr());
auto result = tensorToListRecursive(
data, 0, dim, out_ty, t.scalar_type(), sizes, strides, element_size);
push(stack, std::move(result));
}
void numToTensorScalar(Stack& stack) {
at::Scalar s;
pop(stack, s);
push(stack, c10::scalar_to_tensor(s));
}
void isCuda(Stack& stack) {
at::Tensor a;
pop(stack, a);
push(stack, a.is_cuda());
}
void numToTensorBool(Stack& stack) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
bool b;
pop(stack, b);
push(stack, c10::scalar_to_tensor(b));
}
void dictIndex(Stack& stack) {
auto key = pop(stack);
auto dict = pop(stack).toGenericDict();
auto value = dict.find(key);
if (value == dict.end()) {
AT_ERROR("KeyError: ", key);
}
push(stack, value->value());
}
static const C10_UNUSED std::array<mobile::prim_op_fn_register, 16> op_reg = {
mobile::prim_op_fn_register("prim::TupleIndex", tupleIndex),
mobile::prim_op_fn_register("aten::Bool.Tensor", boolTensor),
mobile::prim_op_fn_register("aten::format", aten_format),
mobile::prim_op_fn_register("prim::NumToTensor.Scalar", numToTensorScalar),
mobile::prim_op_fn_register(
"prim::RaiseException",
raiseExceptionWithMessage),
mobile::prim_op_fn_register("prim::device", device),
mobile::prim_op_fn_register("prim::dtype", dtype),
mobile::prim_op_fn_register("prim::layout", layout),
mobile::prim_op_fn_register("aten::__not__", _not),
mobile::prim_op_fn_register("aten::__is__", is),
mobile::prim_op_fn_register("aten::__isnot__", isNot),
mobile::prim_op_fn_register("aten::dim", dim),
mobile::prim_op_fn_register("prim::Uninitialized", unInitialized),
mobile::prim_op_fn_register("prim::is_cuda", isCuda),
mobile::prim_op_fn_register("aten::__getitem__.Dict_str", dictIndex),
mobile::prim_op_fn_register("prim::unchecked_cast", noop),
// TODO: (@pavithran) size is overloaded with int[] and Tensor
// so this throws error expecting int not Tensor
// mobile::prim_op_fn_register("aten::size", size)
};
} // namespace jit
} // namespace torch
|